Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1992 Jul;36(7):1412–1417. doi: 10.1128/aac.36.7.1412

Activity and local delivery of azithromycin in a mouse model of Haemophilus influenzae lung infection.

E Vallée 1, E Azoulay-Dupuis 1, J J Pocidalo 1, E Bergogne-Bérézin 1
PMCID: PMC191595  PMID: 1324644

Abstract

We compared the activities of azithromycin and erythromycin against Haemophilus influenzae in a mouse model of nonparenchymatous lower respiratory tract infection. In vitro and in vivo efficacy data for both drugs were analyzed relative to their pharmacokinetics in lungs and in vivo uptake by phagocytes. Aged C57BL/6 mice (mean age, 15.1 +/- 1.9 months) were infected intratracheally with 10(8) CFU of H. influenzae serotype b. Oral drug administration was initiated 4 h after infection by various dosage regimens. In terms of bacterial killing in the lung, azithromycin was much more active than erythromycin (P less than 0.01). Its in vivo activity was also more durable after a single administration relative to the durability of three doses of erythromycin given at 6-h intervals. The MIC of azithromycin was eightfold lower than that of erythromycin, and better penetration and a longer half-life in lung tissue were achieved after a single oral administration. Phagocytes delivered increased amounts of both drugs to the infected lungs, particularly at the site of infection (bronchoalveolar airspaces), and detectable levels of azithromycin were maintained locally for long periods. The fact that the efficacy of azithromycin coincided with the arrival of large numbers of polymorphonuclear leukocytes within the airspaces suggests that active extracellular concentrations were provided by the release of azithromycin from these cells. This further supports the potential value of once-daily azithromycin regimens for the treatment of lower respiratory tract infections in humans, provided that inhibitory concentrations against common pathogens such as H. influenzae are maintained for adequate periods of time.

Full text

PDF
1412

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlier M. B., Zenebergh A., Tulkens P. M. Cellular uptake and subcellular distribution of roxithromycin and erythromycin in phagocytic cells. J Antimicrob Chemother. 1987 Nov;20 (Suppl B):47–56. doi: 10.1093/jac/20.suppl_b.47. [DOI] [PubMed] [Google Scholar]
  2. Davies B. I., Maesen F. P., Gubbelmans R. Azithromycin (CP-62,993) in acute exacerbations of chronic bronchitis: an open clinical, microbiological and pharmacokinetic study. J Antimicrob Chemother. 1989 May;23(5):743–751. doi: 10.1093/jac/23.5.743. [DOI] [PubMed] [Google Scholar]
  3. Esposito A. L., Pennington J. E. Experimental pneumonia due to Haemophilus influenzae: observations on pathogenesis and treatment. J Infect Dis. 1984 May;149(5):728–734. doi: 10.1093/infdis/149.5.728. [DOI] [PubMed] [Google Scholar]
  4. Foulds G., Shepard R. M., Johnson R. B. The pharmacokinetics of azithromycin in human serum and tissues. J Antimicrob Chemother. 1990 Jan;25 (Suppl A):73–82. doi: 10.1093/jac/25.suppl_a.73. [DOI] [PubMed] [Google Scholar]
  5. Girard A. E., Girard D., English A. R., Gootz T. D., Cimochowski C. R., Faiella J. A., Haskell S. L., Retsema J. A. Pharmacokinetic and in vivo studies with azithromycin (CP-62,993), a new macrolide with an extended half-life and excellent tissue distribution. Antimicrob Agents Chemother. 1987 Dec;31(12):1948–1954. doi: 10.1128/aac.31.12.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gladue R. P., Bright G. M., Isaacson R. E., Newborg M. F. In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection. Antimicrob Agents Chemother. 1989 Mar;33(3):277–282. doi: 10.1128/aac.33.3.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gladue R. P., Snider M. E. Intracellular accumulation of azithromycin by cultured human fibroblasts. Antimicrob Agents Chemother. 1990 Jun;34(6):1056–1060. doi: 10.1128/aac.34.6.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldstein F. W., Emirian M. F., Coutrot A., Acar J. F. Bacteriostatic and bactericidal activity of azithromycin against Haemophilus influenzae. J Antimicrob Chemother. 1990 Jan;25 (Suppl A):25–28. doi: 10.1093/jac/25.suppl_a.25. [DOI] [PubMed] [Google Scholar]
  9. Greenblatt D. J., Kock-Weser J. Drug therapy. Clinical Pharmacokinetics (first of two parts). N Engl J Med. 1975 Oct 2;293(14):702–705. doi: 10.1056/NEJM197510022931406. [DOI] [PubMed] [Google Scholar]
  10. Hardy D. J., Hensey D. M., Beyer J. M., Vojtko C., McDonald E. J., Fernandes P. B. Comparative in vitro activities of new 14-, 15-, and 16-membered macrolides. Antimicrob Agents Chemother. 1988 Nov;32(11):1710–1719. doi: 10.1128/aac.32.11.1710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harf R., Panteix G., Desnottes J. F., Diallo N., Leclercq M. Spiramycin uptake by alveolar macrophages. J Antimicrob Chemother. 1988 Jul;22 (Suppl B):135–140. doi: 10.1093/jac/22.supplement_b.135. [DOI] [PubMed] [Google Scholar]
  12. Martin J. R., Johnson P., Miller M. F. Uptake, accumulation, and egress of erythromycin by tissue culture cells of human origin. Antimicrob Agents Chemother. 1985 Mar;27(3):314–319. doi: 10.1128/aac.27.3.314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pocidalo J. J., Albert F., Desnottes J. F., Kernbaum S. Intraphagocytic penetration of macrolides: in-vivo comparison of erythromycin and spiramycin. J Antimicrob Chemother. 1985 Jul;16 (Suppl A):167–173. doi: 10.1093/jac/16.suppl_a.167. [DOI] [PubMed] [Google Scholar]
  14. Retsema J., Girard A., Schelkly W., Manousos M., Anderson M., Bright G., Borovoy R., Brennan L., Mason R. Spectrum and mode of action of azithromycin (CP-62,993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms. Antimicrob Agents Chemother. 1987 Dec;31(12):1939–1947. doi: 10.1128/aac.31.12.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shepard R. M., Falkner F. C. Pharmacokinetics of azithromycin in rats and dogs. J Antimicrob Chemother. 1990 Jan;25 (Suppl A):49–60. doi: 10.1093/jac/25.suppl_a.49. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES