Abstract
Whole isolated rat glomeruli (WG) were incubated with bacterial collagenase to separate epithelial cells (EC) from the cores of glomerular tufts (GC), which consisted of mesangial and endothelial cells, as demonstrated by electron microscopy. Lysates of WG, EC, and GC and of renal tubules were prepared by hypo-osmotic shock and freeze-thawing. Activities of the following acidic lysosomal hydrolases were measured: acid phosphatase, beta-glucuronidase, cathepsin-D, non-specific esterase, and aryl sulfatases A and B. The glomerular cell preparations showed activities of all studied enzymes. GC had higher activities than EC, save for nonspecific esterase. Studies of the recovery of acid phosphatase and beta-glucuronidase revealed that approximately 2/3 of the hydrolase activities present in WG was still measureable after collagenase treatment and that the bulk of this was found in the GC lysates. These findings demonstrate that the rat glomerulus and its cell components have considerable biochemical activities of acidic hydrolytic enzymes. These appear to be most prominent in the combined mesangial and endothelial cells of the GC components.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baccino F. M., Rita G. A., Zuretti M. F. Studies on the structure-bound sedimentabolity of some rat liver lysosome hydrolases. Biochem J. 1971 Apr;122(3):363–371. doi: 10.1042/bj1220363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baccino F. M., Zuretti M. F. Structural equivalents of latency for lysosome hydrolases. Biochem J. 1975 Jan;146(1):97–108. doi: 10.1042/bj1460097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhuyan U. N., Welbourn C. R., Evans D. J., Peters T. J. Biochemical studies of the isolated rat glomerulus and the effects of puromycin aminonucleoside administration. Br J Exp Pathol. 1980 Feb;61(1):69–75. [PMC free article] [PubMed] [Google Scholar]
- Brendel K., Meezan E. Properties of a pure metabolically active glomerular preparation from rat kidneys. II. Metabolism. J Pharmacol Exp Ther. 1973 Nov;187(2):342–351. [PubMed] [Google Scholar]
- DANNENBERG A. M., Jr, BENNETT W. E. HYDROLYTIC ENZYMES OF RABBIT MONONUCLEAR EXUDATE CELLS. I. QUANTITATIVE ASSAY AND PROPERTIES OF CERTAIN PROTEASES, NON-SPECIFIC ESTERASES, AND LIPASES OF MONONUCLEAR AND POLYMORPHONUCLEAR CELLS AND ERYTHROCYTES. J Cell Biol. 1964 Apr;21:1–13. doi: 10.1083/jcb.21.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubach U. C., Schmidt U. Enzymology of human kidney (a review with special consideration of the quantitative histochemistry). Enzymol Biol Clin (Basel) 1970;11(1):32–51. [PubMed] [Google Scholar]
- Elema J. D., Hoyer J. R., Vernier R. L. The glomerular mesangium: uptake and transport of intravenously injected colloidal carbon in rats. Kidney Int. 1976 May;9(5):395–406. doi: 10.1038/ki.1976.49. [DOI] [PubMed] [Google Scholar]
- Federation of American Societies for Experimental Biology. 65th annual meeting, Atlanta, Georgia, April 12-17, 1981. Abstracts. Fed Proc. 1981 Mar 1;40(3 Pt 2):805–1359. [PubMed] [Google Scholar]
- Grégoire F. Kidney enzyme changes in experimental proteinuria. Lab Invest. 1971 Dec;25(6):626–634. [PubMed] [Google Scholar]
- KRAKOWER C. A., GREENSPON S. A. Localization of the nephrotoxic antigen within the isolated renal glomerulus. AMA Arch Pathol. 1951 Jun;51(6):629–639. [PubMed] [Google Scholar]
- Kalant N. Diabetic glomerulosclerosis: current status. Can Med Assoc J. 1978 Jul 22;119(2):146–153. [PMC free article] [PubMed] [Google Scholar]
- Killen P. D., Striker G. E. Human glomerular visceral epithelial cells synthesize a basal lamina collagen in vitro. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3518–3522. doi: 10.1073/pnas.76.7.3518. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LATTA H., MAUNSBACH A. B., MADDEN S. C. The centrolobular region of the renal glomerulus studied by electron microscopy. J Ultrastruct Res. 1960 Dec;4:455–472. doi: 10.1016/s0022-5320(60)80033-0. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lee S., Vernier R. L. Immunoelectron microscopy of the glomerular mesangial uptake and transport of aggregated human albumin in the mouse. Lab Invest. 1980 Jan;42(1):44–58. [PubMed] [Google Scholar]
- MILLER F., PALADE G. E. LYTIC ACTIVITIES IN RENAL PROTEIN ABSORPTION DROPLETS. AN ELECTRON MICROSCOPICAL CYTOCHEMICAL STUDY. J Cell Biol. 1964 Dec;23:519–552. doi: 10.1083/jcb.23.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michael A. F., Keane W. F., Raij L., Vernier R. L., Mauer S. M. The glomerular mesangium. Kidney Int. 1980 Feb;17(2):141–154. doi: 10.1038/ki.1980.18. [DOI] [PubMed] [Google Scholar]
- Monga G., Mazzucco G., di Belgiojoso G. B., Busnach G. Monocyte infiltration and glomerular hypercellularity in human acute and persistent glomerulonephritis. Light and electron microscopic, immunofluorescence, and histochemical investigation on twenty-eight cases. Lab Invest. 1981 Apr;44(4):381–387. [PubMed] [Google Scholar]
- Rastegar A., Biemesderfer D., Kashgarian M., Hayslett J. P. Changes in membrane surfaces of collecting duct cells in potassium adaptation. Kidney Int. 1980 Sep;18(3):293–301. doi: 10.1038/ki.1980.139. [DOI] [PubMed] [Google Scholar]
- STRAUS W. OCCURRENCE OF PHAGOSOMES AND PHAGO-LYSOSOMES IN DIFFERENT SEGMENTS OF THE NEPHRON IN RELATION TO THE REABSORPTION, TRANSPORT, DIGESTION, AND EXTRUSION OF INTRAVENOUSLY INJECTED HORSERADISH PEROXIDASE. J Cell Biol. 1964 Jun;21:295–308. doi: 10.1083/jcb.21.3.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sterzel R. B., Pabst R. The cellular reaction in glomeruli of rats with anti-glomerular basement membrane nephritis. Ren Physiol. 1981;4(2-3):145–149. doi: 10.1159/000172819. [DOI] [PubMed] [Google Scholar]
- Taylor D. G., Price R. G., Robinson D. The distribution of some hydrolases in glomeruli and tubular fragments prepared from rat kidney by zonal centrifugation. Biochem J. 1971 May;122(5):641–645. doi: 10.1042/bj1220641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker F. The origin, turnover and removal of glomerular basement-membrane. J Pathol. 1973 Jul;110(3):233–244. doi: 10.1002/path.1711100306. [DOI] [PubMed] [Google Scholar]