Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1992 Jul;36(7):1447–1455. doi: 10.1128/aac.36.7.1447

Characterization of the chromosomal aac(6')-Ic gene from Serratia marcescens.

K J Shaw 1, P N Rather 1, F J Sabatelli 1, P Mann 1, H Munayyer 1, R Mierzwa 1, G L Petrikkos 1, R S Hare 1, G H Miller 1, P Bennett 1, P Downey 1, et al.
PMCID: PMC191602  PMID: 1354954

Abstract

The DNA sequence of the chromosomal aac(6')-Ic gene from Serratia marcescens, which had been previously cloned (H. M. Champion, P. M. Bennett, D. A. Lewis, and D. S. Reeves, J. Antimicrob. Chemother. 22:587-596, 1988) was determined. High-pressure liquid chromatographic analysis of extracts prepared from Escherichia coli carrying the chromosomal aac(6')-Ic gene on a plasmid confirmed the presence of 6'-N-acetyltransferase activity in this strain, which was suggested by the aminoglycoside resistance profile. DNA sequence analysis of the cloned 2,057-bp PstI fragment revealed several regions of homology to previously characterized sequences from GenBank, including the rpoD and tRNA-2 genes of E. coli. Subcloning experiments confirmed the coding sequence of the aac(6')-Ic gene to be at positions 1554 to 1992. The predicted amino acid sequence of the AAC(6')-Ic protein suggested that it was the third member of a family of AAC(6') proteins which included a coding region identified between the aadB and aadA genes of Tn4000 and an AAC(6') protein encoded by pUO490, which was isolated from Enterobacter cloacae. Primer extension analysis suggested that the -35 region of the aac(6')-Ic promoter overlapped a large palindromic sequence which may be involved in the regulation of the aac(6')-Ic gene. Hybridization experiments utilizing a restriction fragment from the aac(6')-Ic gene showed that all S. marcescens organisms carried this gene whether or not the AAC(6')-I resistance profile was expressed. Organisms other than Serratia spp. did not hybridize to this probe.

Full text

PDF
1447

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burton Z. F., Gross C. A., Watanabe K. K., Burgess R. R. The operon that encodes the sigma subunit of RNA polymerase also encodes ribosomal protein S21 and DNA primase in E. coli K12. Cell. 1983 Feb;32(2):335–349. doi: 10.1016/0092-8674(83)90453-1. [DOI] [PubMed] [Google Scholar]
  2. Burton Z., Burgess R. R., Lin J., Moore D., Holder S., Gross C. A. The nucleotide sequence of the cloned rpoD gene for the RNA polymerase sigma subunit from E coli K12. Nucleic Acids Res. 1981 Jun 25;9(12):2889–2903. doi: 10.1093/nar/9.12.2889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Champion H. M., Bennett P. M., Lewis D. A., Reeves D. S. Cloning and characterization of an AAC(6') gene from Serratia marcescens. J Antimicrob Chemother. 1988 Nov;22(5):587–596. doi: 10.1093/jac/22.5.587. [DOI] [PubMed] [Google Scholar]
  4. Cohen S. N., Chang A. C., Hsu L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2110–2114. doi: 10.1073/pnas.69.8.2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Courvalin P., Carlier C. Resistance towards aminoglycoside-aminocyclitol antibiotics in bacteria. J Antimicrob Chemother. 1981 Jul;8 (Suppl A):57–69. doi: 10.1093/jac/8.suppl_a.57. [DOI] [PubMed] [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Erickson B. D., Burton Z. F., Watanabe K. K., Burgess R. R. Nucleotide sequence of the rpsU-dnaG-rpoD operon from Salmonella typhimurium and a comparison of this sequence with the homologous operon of Escherichia coli. Gene. 1985;40(1):67–78. doi: 10.1016/0378-1119(85)90025-3. [DOI] [PubMed] [Google Scholar]
  8. Ferretti J. J., Gilmore K. S., Courvalin P. Nucleotide sequence analysis of the gene specifying the bifunctional 6'-aminoglycoside acetyltransferase 2"-aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and identification and cloning of gene regions specifying the two activities. J Bacteriol. 1986 Aug;167(2):631–638. doi: 10.1128/jb.167.2.631-638.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gómez-Lus R., Rivera M. J., Bobey D., Martín C., Navarro M. Chromosomal origin of acetyltransferase AAC(6') specifying amikacin resistance in Serratia marcescens. Microbiologia. 1987 Oct;3(3):185–194. [PubMed] [Google Scholar]
  10. Hawkey P. M., Constable H. K. Selection of netilmicin resistance, associated with increased 6' aminoglycoside acetyltransferase activity, in Serratia marcescens. J Antimicrob Chemother. 1988 May;21(5):535–544. doi: 10.1093/jac/21.5.535. [DOI] [PubMed] [Google Scholar]
  11. John J. F., Jr, McNeill W. F., Price K. E., Kresel P. A. Evidence for a chromosomal site specifying amikacin resistance in multiresistant Serratia marcescens. Antimicrob Agents Chemother. 1982 Apr;21(4):587–591. doi: 10.1128/aac.21.4.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kenney T. J., Kirchman P. A., Moran C. P., Jr Gene encoding sigma E is transcribed from a sigma A-like promoter in Bacillus subtilis. J Bacteriol. 1988 Jul;170(7):3058–3064. doi: 10.1128/jb.170.7.3058-3064.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lovering A. M., White L. O., Reeves D. S. Identification of aminoglycoside-acetylating enzymes by high-pressure liquid chromatographic determination of their reaction products. Antimicrob Agents Chemother. 1984 Jul;26(1):10–12. doi: 10.1128/aac.26.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Muramatsu T., Nishikawa K., Nemoto F., Kuchino Y., Nishimura S., Miyazawa T., Yokoyama S. Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature. 1988 Nov 10;336(6195):179–181. doi: 10.1038/336179a0. [DOI] [PubMed] [Google Scholar]
  15. Nobuta K., Tolmasky M. E., Crosa L. M., Crosa J. H. Sequencing and expression of the 6'-N-acetyltransferase gene of transposon Tn1331 from Klebsiella pneumoniae. J Bacteriol. 1988 Aug;170(8):3769–3773. doi: 10.1128/jb.170.8.3769-3773.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reid J. D., Stoufer S. D., Ogrydziak D. M. Efficient transformation of Serratia marcescens with pBR322 plasmid DNA. Gene. 1982 Jan;17(1):107–112. doi: 10.1016/0378-1119(82)90106-8. [DOI] [PubMed] [Google Scholar]
  17. Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. doi: 10.1146/annurev.ge.13.120179.001535. [DOI] [PubMed] [Google Scholar]
  18. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schmidt F. R., Nücken E. J., Henschke R. B. Nucleotide sequence analysis of 2''-aminoglycoside nucleotidyl-transferase ANT(2'') from Tn4000: its relationship with AAD(3'') and impact on Tn21 evolution. Mol Microbiol. 1988 Nov;2(6):709–717. doi: 10.1111/j.1365-2958.1988.tb00081.x. [DOI] [PubMed] [Google Scholar]
  20. Shaw K. J., Cramer C. A., Rizzo M., Mierzwa R., Gewain K., Miller G. H., Hare R. S. Isolation, characterization, and DNA sequence analysis of an AAC(6')-II gene from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1989 Dec;33(12):2052–2062. doi: 10.1128/aac.33.12.2052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shaw K. J., Hare R. S., Sabatelli F. J., Rizzo M., Cramer C. A., Naples L., Kocsi S., Munayyer H., Mann P., Miller G. H. Correlation between aminoglycoside resistance profiles and DNA hybridization of clinical isolates. Antimicrob Agents Chemother. 1991 Nov;35(11):2253–2261. doi: 10.1128/aac.35.11.2253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shimizu K., Kumada T., Hsieh W. C., Chung H. Y., Chong Y., Hare R. S., Miller G. H., Sabatelli F. J., Howard J. Comparison of aminoglycoside resistance patterns in Japan, Formosa, and Korea, Chile, and the United States. Antimicrob Agents Chemother. 1985 Aug;28(2):282–288. doi: 10.1128/aac.28.2.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tenover F. C., Filpula D., Phillips K. L., Plorde J. J. Cloning and sequencing of a gene encoding an aminoglycoside 6'-N-acetyltransferase from an R factor of Citrobacter diversus. J Bacteriol. 1988 Jan;170(1):471–473. doi: 10.1128/jb.170.1.471-473.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Terán F. J., Suárez J. E., Mendoza M. C. Cloning, sequencing, and use as a molecular probe of a gene encoding an aminoglycoside 6'-N-acetyltransferase of broad substrate profile. Antimicrob Agents Chemother. 1991 Apr;35(4):714–719. doi: 10.1128/aac.35.4.714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tran van Nhieu G., Collatz E. Primary structure of an aminoglycoside 6'-N-acetyltransferase AAC(6')-4, fused in vivo with the signal peptide of the Tn3-encoded beta-lactamase. J Bacteriol. 1987 Dec;169(12):5708–5714. doi: 10.1128/jb.169.12.5708-5714.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yamaguchi M., Mitsuhashi S., Kobayashi F., Zenda H. A 2'-N-acetylating enzyme of aminoglycosides. J Antibiot (Tokyo) 1974 Jul;27(7):507–515. doi: 10.7164/antibiotics.27.507. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES