Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1982 Aug;108(2):171–183.

Characterization of three macrophage chemotactic factors from PPD-induced delayed hypersensitivity reaction sites in guinea pigs, with special reference to a chemotactic lymphokine.

M Honda 1, H Hayashi 1
PMCID: PMC1916088  PMID: 6765857

Abstract

Three types of macrophage chemotactic factors (MCFs) were separated from purified protein derivative (PPD)-induced delayed hypersensitivity (DHR) skin lesions in guinea pigs, and MCF-c was purified isotachophoretically. The macrophage chemotactic activity (MCA) of the skin extract was mostly associated with MCF-a and c. MCF-c (mol wt 110,000) seemed more significant for mediating the macrophage reaction than MCF-a (mol wt 150,000), which exhibited common antigenicity with serum IgG. MCF-b (mol wt 14,000), manifesting common antigenicity with the fifth component of complement (C5), was apparently less significant. MCF-c was thermostable and had an isoelectric point (pI) of 5.2 +/- 0.1. The protein exhibited marked macrophage chemotactic activities (MCA) but no neutrophil chemotactic, lymphocyte chemotactic, and MIF activity in excess of that in vitro. Selective accumulation of macrophages was observed in response to intradermal MCF-c injection. Our studies suggest that MCF-c at 24-hour skin sites of DHR may exist as specific lymphokine preparations with high potential for monocyte infiltration.

Full text

PDF
171

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman L. C., Chassy B., Mackler B. F. Physicochemical characterization of chemotatic lymphokines produced by human T and B lymphocytes. J Immunol. 1975 Jul;115(1):18–21. [PubMed] [Google Scholar]
  2. Altman L. C., Snyderman R., Oppenheim J. J., Mergenhagen S. E. A human mononuclear leukocyte chemotactic factor: characterization, specificity and kinetics of production by homologous leukocytes. J Immunol. 1973 Mar;110(3):801–810. [PubMed] [Google Scholar]
  3. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aoki Y., Urata G., Takaku F., Katunuma N. A new protease inactivating delta-aminolevulinic acid synthetase in mitochondria of human bone marrow cells. Biochem Biophys Res Commun. 1975 Jul 22;65(2):567–574. doi: 10.1016/s0006-291x(75)80184-7. [DOI] [PubMed] [Google Scholar]
  5. Arlinger L. Analytical isotachophoresis in capillary tubes. Analysis of hemoglobin, hemiglobin cyanide and isoelectric fractions of hemiglobin cyanide. Biochim Biophys Acta. 1975 Jun 26;393(2):396–403. doi: 10.1016/0005-2795(75)90068-9. [DOI] [PubMed] [Google Scholar]
  6. BOYDEN S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med. 1962 Mar 1;115:453–466. doi: 10.1084/jem.115.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen S., Ward P. A., Yoshida T., Burek C. L. Biologic activity of extracts of delayed hypersensitivity skin reaction sites. Cell Immunol. 1973 Dec;9(3):363–376. doi: 10.1016/0008-8749(73)90051-8. [DOI] [PubMed] [Google Scholar]
  8. Craddock C. G., Longmire R., McMillan R. Lymphocytes and the immune response. I. N Engl J Med. 1971 Aug 5;285(6):324–331. doi: 10.1056/NEJM197108052850606. [DOI] [PubMed] [Google Scholar]
  9. DAVID J. R., AL-ASKARI S., LAWRENCE H. S., THOMAS L. DELAYED HYPERSENSITIVITY IN VITRO. I. THE SPECIFICITY OF INHIBITION OF CELL MIGRATION BY ANTIGENS. J Immunol. 1964 Aug;93:264–273. [PubMed] [Google Scholar]
  10. Hayashi H. The intracellular neutral SH-dependent protease associated with inflammatory reactions. Int Rev Cytol. 1975;40:101–151. [PubMed] [Google Scholar]
  11. Hedlund K. W., Wistar R., Jr, Nichelson D. The identification of the subclasses of human IgG by analytical isotachophoresis. J Immunol Methods. 1979;25(1):43–48. doi: 10.1016/0022-1759(79)90163-7. [DOI] [PubMed] [Google Scholar]
  12. Higuchi Y., Honda M., Hayashi H. Production of chemotactic factor for lymphocytes by neutral SH-dependent protease of rabbit PMN leukocytes from immunoglobulins, especially IgM. Cell Immunol. 1975 Jan;15(1):100–108. doi: 10.1016/0008-8749(75)90168-9. [DOI] [PubMed] [Google Scholar]
  13. Hirashima M., Honda M., Hayashi H. The mediation of tissue eosinophilia in hypersensitivity reactions. II. Separation of a delayed eosinophil chemotactic factor from macrophage chemotactic factors. Immunology. 1976 Aug;31(2):263–271. [PMC free article] [PubMed] [Google Scholar]
  14. Honda M., Hirashima M., Nishiura M., Hayashi H. A macrophage chemotactic factor sharing common antigenicity with immunoglobulin G from DNP-ascaris extract-induced skin lesion in guinea-pig. Virchows Arch B Cell Pathol. 1978 Jun 19;27(4):317–333. doi: 10.1007/BF02889004. [DOI] [PubMed] [Google Scholar]
  15. Honda M., Miura K., Kuratsu J., Hayashi H. Characterization of a macrophage chemotactic lymphokine produced by purified protein derivative stimulation in vitro and in vivo. Cell Immunol. 1982 Mar 1;67(2):213–228. doi: 10.1016/0008-8749(82)90215-5. [DOI] [PubMed] [Google Scholar]
  16. Ishida M., Honda M., Hayashi H. In vitro macrophage chemotactic generation from serum immunoglobulin G by neutrophil neutral seryl protease. Immunology. 1978 Jul;35(1):167–176. [PMC free article] [PubMed] [Google Scholar]
  17. Jungi T. W., McGregor D. D. Generation of macrophage chemotactic activity in situ in Listeria-immune rats. Cell Immunol. 1977 Oct;33(2):322–339. doi: 10.1016/0008-8749(77)90162-9. [DOI] [PubMed] [Google Scholar]
  18. Kambara T., Ueda K., Maeda S. The chemical mediation of delayed hypersensitivity skin reactions. I. Purification of a macrophage-chemotactic factor from bovien gamma-globulin-induced skin reactions in guinea pigs. Am J Pathol. 1977 May;87(2):359–374. [PMC free article] [PubMed] [Google Scholar]
  19. Kay A. B. Studies on eosinophil leucocyte migration. I. Eosinophil and neutrophil accumulation following antigen-antibody reactions in guinea-pig skin. Clin Exp Immunol. 1970 Jan;6(1):75–86. [PMC free article] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. MAYASHI H., MIYOSHI H., NITTA R., UDAKA K. Proteolytic mechanism in recurrence of Arthus-type inflammation by thiol compounds. Br J Exp Pathol. 1962 Oct;43:564–573. [PMC free article] [PubMed] [Google Scholar]
  22. NELSON D. S., BOYDEN S. V. THE CUTANEOUS REACTIVITY OF GUINEA PIGS TO PURE PROTEIN ANTIGENS. I. A CRITICAL EVALUATION OF METHODS FOR THE INDUCTION OF DELAYED-TYPE HYPERSENSITIVITY TO PURE PROTEINS. Int Arch Allergy Appl Immunol. 1964;25:279–303. doi: 10.1159/000229529. [DOI] [PubMed] [Google Scholar]
  23. ORNSTEIN L. DISC ELECTROPHORESIS. I. BACKGROUND AND THEORY. Ann N Y Acad Sci. 1964 Dec 28;121:321–349. doi: 10.1111/j.1749-6632.1964.tb14207.x. [DOI] [PubMed] [Google Scholar]
  24. OUCHTERLONY O. Antigen-antibody reactions in gels. IV. Types of reactions in coordinated systems of diffusion. Acta Pathol Microbiol Scand. 1953;32(2):230–240. [PubMed] [Google Scholar]
  25. POSTLETHWAITE A. E., Snyderman R. Characterization of chemotactic activity produced in vivo by a cell-mediated immune reaction in the guinea pig. J Immunol. 1975 Jan;114(1 Pt 2):274–278. [PubMed] [Google Scholar]
  26. Piessens W. F., Churchill W. H., Jr, David Macrophages activated in vitro with lymphocyte mediators kill neoplastic but not normal cells. J Immunol. 1975 Jan;114(1 Pt 2):293–299. [PubMed] [Google Scholar]
  27. Porath J., Axen R., Ernback S. Chemical coupling of proteins to agarose. Nature. 1967 Sep 30;215(5109):1491–1492. doi: 10.1038/2151491a0. [DOI] [PubMed] [Google Scholar]
  28. SCHEIDEGGER J. J. Une micro-méthode de l'immuno-electrophorèse. Int Arch Allergy Appl Immunol. 1955;7(2):103–110. [PubMed] [Google Scholar]
  29. Snyderman R., Altman L. C., Hausman M. S., Mergenhagen S. E. Human mononuclear leukocyte chemotaxis: a quantitative assay for humoral and cellular chemotactic factors. J Immunol. 1972 Mar;108(3):857–860. [PubMed] [Google Scholar]
  30. Snyderman R., Shin H., Dannenberg A. M., Jr Macrophage proteinase and inflammation: the production of chemotactic activity from the fifth complement by macrophage proteinase. J Immunol. 1972 Oct;109(4):896–898. [PubMed] [Google Scholar]
  31. Vesterberg O., Svensson H. Isoelectric fractionation, analysis, and characterization of ampholytes in natural pH gradients. IV. Further studies on the resolving power in connection with separation of myoglobins. Acta Chem Scand. 1966;20(3):820–834. doi: 10.3891/acta.chem.scand.20-0820. [DOI] [PubMed] [Google Scholar]
  32. Wahl S. M., Altman L. C., Oppenheim J. J., Mergenhagen S. E. In vitro studies of a chemotactic lymphokine in the guinea pig. Int Arch Allergy Appl Immunol. 1974;46(5):768–784. doi: 10.1159/000231176. [DOI] [PubMed] [Google Scholar]
  33. Ward P. A., Hill J. H. C5 chemotactic fragments produced by an enzyme in lysosomal granules of neutrophils. J Immunol. 1970 Mar;104(3):535–543. [PubMed] [Google Scholar]
  34. Ward P. A., Remold H. G., David J. R. Leukotactic factor produced by sensitized lymphocytes. Science. 1969 Mar 7;163(3871):1079–1081. doi: 10.1126/science.163.3871.1079. [DOI] [PubMed] [Google Scholar]
  35. Yamamoto S., Yoshinaga M., Hayashi H. The natural mediator for PMN emigration in inflammation. II. Common antigenicity of leucoegresin with immunoglobulin G. Immunology. 1971 May;20(5):803–808. [PMC free article] [PubMed] [Google Scholar]
  36. Yoshinaga M., Yoshida K., Tashiro A., Hayashi H. The natural mediator for PMN emigration in inflammation. I. Purification and characterization of leucoegresin from Arthus skin site. Immunology. 1971 Aug;21(2):281–298. [PMC free article] [PubMed] [Google Scholar]
  37. Zigmond S. H., Hirsch J. G. Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell-derived chemotactic factor. J Exp Med. 1973 Feb 1;137(2):387–410. doi: 10.1084/jem.137.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES