Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1992 Jul;36(7):1570–1572. doi: 10.1128/aac.36.7.1570

Comparative in vitro activities of teicoplanin, daptomycin, ramoplanin, vancomycin, and PD127,391 against blood isolates of gram-positive cocci.

D Shonekan 1, D Mildvan 1, S Handwerger 1
PMCID: PMC191623  PMID: 1324649

Abstract

The in vitro activities of teicoplanin, daptomycin, ramoplanin, and PD127,391, a new quinolone, were compared with that of vancomycin. Teicoplanin showed the lowest MICs against Enterococcus faecalis. Ramoplanin was slightly more active than the other peptide antibiotics against oxacillin-resistant Staphylococcus aureus. The MICs of the four peptide antibiotics were similar for the oxacillin-susceptible S. aureus. Daptomycin had good activity against staphylococci but was the least active agent against E. faecalis. The MICs of vancomycin against all isolates were in general higher than those of the new antibiotics, with the exceptions of the MICs of daptomycin against E. faecalis and teicoplanin against oxacillin-resistant Staphylococcus epidermidis. PD127,391 was the most active agent against all staphylococcal isolates.

Full text

PDF
1570

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen N. E., Alborn W. E., Jr, Hobbs J. N., Jr Inhibition of membrane potential-dependent amino acid transport by daptomycin. Antimicrob Agents Chemother. 1991 Dec;35(12):2639–2642. doi: 10.1128/aac.35.12.2639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartoloni A., Colao M. G., Orsi A., Dei R., Giganti E., Parenti F. In-vitro activity of vancomycin, teicoplanin, daptomycin, ramoplanin, MDL 62873 and other agents against staphylococci, enterococci and Clostridium difficile. J Antimicrob Chemother. 1990 Nov;26(5):627–633. doi: 10.1093/jac/26.5.627. [DOI] [PubMed] [Google Scholar]
  3. Garrison M. W., Rotschafer J. C., Crossley K. B. Suboptimal effect of daptomycin in the treatment of bacteremias. South Med J. 1989 Nov;82(11):1414–1415. doi: 10.1097/00007611-198911000-00018. [DOI] [PubMed] [Google Scholar]
  4. Garrison M. W., Vance-Bryan K., Larson T. A., Toscano J. P., Rotschafer J. C. Assessment of effects of protein binding on daptomycin and vancomycin killing of Staphylococcus aureus by using an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 1990 Oct;34(10):1925–1931. doi: 10.1128/aac.34.10.1925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goldstein F. W., Coutrot A., Sieffer A., Acar J. F. Percentages and distributions of teicoplanin- and vancomycin-resistant strains among coagulase-negative staphylococci. Antimicrob Agents Chemother. 1990 May;34(5):899–900. doi: 10.1128/aac.34.5.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gorzynski E. A., Amsterdam D., Beam T. R., Jr, Rotstein C. Comparative in vitro activities of teicoplanin, vancomycin, oxacillin, and other antimicrobial agents against bacteremic isolates of gram-positive cocci. Antimicrob Agents Chemother. 1989 Nov;33(11):2019–2022. doi: 10.1128/aac.33.11.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Handwerger S., Pucci M. J., Kolokathis A. Vancomycin resistance is encoded on a pheromone response plasmid in Enterococcus faecium 228. Antimicrob Agents Chemother. 1990 Feb;34(2):358–360. doi: 10.1128/aac.34.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kaplan A. H., Gilligan P. H., Facklam R. R. Recovery of resistant enterococci during vancomycin prophylaxis. J Clin Microbiol. 1988 Jun;26(6):1216–1218. doi: 10.1128/jcm.26.6.1216-1218.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. King A., Boothman C., Phillips I. The in-vitro activity of PD127,391, a new quinolone. J Antimicrob Chemother. 1988 Aug;22(2):135–141. doi: 10.1093/jac/22.2.135. [DOI] [PubMed] [Google Scholar]
  10. Leclercq R., Derlot E., Duval J., Courvalin P. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med. 1988 Jul 21;319(3):157–161. doi: 10.1056/NEJM198807213190307. [DOI] [PubMed] [Google Scholar]
  11. Liebowitz L. D., Saunders J., Chalkley L. J., Koornhof H. J. In vitro selection of bacteria resistant to LY146032, a new cyclic lipopeptide. Antimicrob Agents Chemother. 1988 Jan;32(1):24–26. doi: 10.1128/aac.32.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Maple P. A., Hamilton-Miller J. M., Brumfitt W. Comparative in-vitro activity of vancomycin, teicoplanin, ramoplanin (formerly A16686), paldimycin, DuP 721 and DuP 105 against methicillin and gentamicin resistant Staphylococcus aureus. J Antimicrob Chemother. 1989 Apr;23(4):517–525. doi: 10.1093/jac/23.4.517. [DOI] [PubMed] [Google Scholar]
  13. Nagarajan R. Antibacterial activities and modes of action of vancomycin and related glycopeptides. Antimicrob Agents Chemother. 1991 Apr;35(4):605–609. doi: 10.1128/aac.35.4.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Norrby S. R., Jonsson M. Comparative in vitro activity of PD 127,391, a new fluorinated 4-quinolone derivative. Antimicrob Agents Chemother. 1988 Aug;32(8):1278–1281. doi: 10.1128/aac.32.8.1278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pohlod D. J., Saravolatz L. D., Somerville M. M. In-vitro susceptibility of gram-positive cocci to LY146032 teicoplanin, sodium fusidate, vancomycin, and rifampicin. J Antimicrob Chemother. 1987 Aug;20(2):197–202. doi: 10.1093/jac/20.2.197. [DOI] [PubMed] [Google Scholar]
  16. Reynolds P. E. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis. 1989 Nov;8(11):943–950. doi: 10.1007/BF01967563. [DOI] [PubMed] [Google Scholar]
  17. Schwalbe R. S., Stapleton J. T., Gilligan P. H. Emergence of vancomycin resistance in coagulase-negative staphylococci. N Engl J Med. 1987 Apr 9;316(15):927–931. doi: 10.1056/NEJM198704093161507. [DOI] [PubMed] [Google Scholar]
  18. Shlaes D. M., Bouvet A., Devine C., Shlaes J. H., al-Obeid S., Williamson R. Inducible, transferable resistance to vancomycin in Enterococcus faecalis A256. Antimicrob Agents Chemother. 1989 Feb;33(2):198–203. doi: 10.1128/aac.33.2.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Somner E. A., Reynolds P. E. Inhibition of peptidoglycan biosynthesis by ramoplanin. Antimicrob Agents Chemother. 1990 Mar;34(3):413–419. doi: 10.1128/aac.34.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stille W., Sietzen W., Dieterich H. A., Fell J. J. Clinical efficacy and safety of teicoplanin. J Antimicrob Chemother. 1988 Jan;21 (Suppl A):69–79. doi: 10.1093/jac/21.suppl_a.69. [DOI] [PubMed] [Google Scholar]
  21. Uttley A. H., Collins C. H., Naidoo J., George R. C. Vancomycin-resistant enterococci. Lancet. 1988 Jan 2;1(8575-6):57–58. doi: 10.1016/s0140-6736(88)91037-9. [DOI] [PubMed] [Google Scholar]
  22. Wise R., Ashby J. P., Andrews J. M. In vitro activity of PD 127,391, an enhanced-spectrum quinolone. Antimicrob Agents Chemother. 1988 Aug;32(8):1251–1256. doi: 10.1128/aac.32.8.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES