Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1992 Jul;36(7):1577–1579. doi: 10.1128/aac.36.7.1577

Stability of meropenem and effect of 1 beta-methyl substitution on its stability in the presence of renal dehydropeptidase I.

M Fukasawa 1, Y Sumita 1, E T Harabe 1, T Tanio 1, H Nouda 1, T Kohzuki 1, T Okuda 1, H Matsumura 1, M Sunagawa 1
PMCID: PMC191626  PMID: 1510457

Abstract

The stability of meropenem in the presence of renal dehydropeptidase I (DHP-I) varied extremely with the animal source of the enzyme. Meropenem, compared with imipenem, was rather easily hydrolyzed by DHP-Is from mice, rabbits, and monkeys, while it showed a higher resistance to guinea pig and beagle dog DHP-Is. In addition, meropenem was four times more resistant than imipenem to human DHP-I. The 1 beta-methyl substituent on carbapenems, i.e., meropenem and 1 beta-methyl imipenem, made them considerably more resistant to mouse and swine DHP-Is than the 1-unsubstituted derivatives are.

Full text

PDF
1577

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakken J. S., Sanders C. C., Clark R. B., Hori M. Beta-lactam resistance in Aeromonas spp. caused by inducible beta-lactamases active against penicillins, cephalosporins, and carbapenems. Antimicrob Agents Chemother. 1988 Sep;32(9):1314–1319. doi: 10.1128/aac.32.9.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bax R. P., Bastain W., Featherstone A., Wilkinson D. M., Hutchison M., Haworth S. J. The pharmacokinetics of meropenem in volunteers. J Antimicrob Chemother. 1989 Sep;24 (Suppl A):311–320. doi: 10.1093/jac/24.suppl_a.311. [DOI] [PubMed] [Google Scholar]
  3. Brown A. G., Corbett D. F., Eglington A. J., Howarth T. T. Structures of olivanic acid derivatives MM 22380, MM 22381, MM 22382 and MM 22383; four new antibiotics isolated from Streptomyces olivaceus. J Antibiot (Tokyo) 1979 Sep;32(9):961–963. doi: 10.7164/antibiotics.32.961. [DOI] [PubMed] [Google Scholar]
  4. Campbell B. J., Lin Y. C., Davis R. V., Ballew E. The purification and properties of a particulate renal dipeptidase. Biochim Biophys Acta. 1966 May 5;118(2):371–386. doi: 10.1016/s0926-6593(66)80046-2. [DOI] [PubMed] [Google Scholar]
  5. Cuchural G. J., Jr, Malamy M. H., Tally F. P. Beta-lactamase-mediated imipenem resistance in Bacteroides fragilis. Antimicrob Agents Chemother. 1986 Nov;30(5):645–648. doi: 10.1128/aac.30.5.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harrison M. P., Moss S. R., Featherstone A., Fowkes A. G., Sanders A. M., Case D. E. The disposition and metabolism of meropenem in laboratory animals and man. J Antimicrob Chemother. 1989 Sep;24 (Suppl A):265–277. doi: 10.1093/jac/24.suppl_a.265. [DOI] [PubMed] [Google Scholar]
  7. Hirota T., Nishikawa Y., Tanaka M., Fukuda K., Igarashi T., Kitagawa H. Localization of dehydropeptidase-I, an enzyme processing glutathione, in the rat kidney. J Biochem. 1987 Sep;102(3):547–550. doi: 10.1093/oxfordjournals.jbchem.a122087. [DOI] [PubMed] [Google Scholar]
  8. Hirota T., Nishikawa Y., Tanaka M., Igarashi T., Kitagawa H. Characterization of dehydropeptidase I in the rat lung. Eur J Biochem. 1986 Nov 3;160(3):521–525. doi: 10.1111/j.1432-1033.1986.tb10070.x. [DOI] [PubMed] [Google Scholar]
  9. Kahan J. S., Kahan F. M., Goegelman R., Currie S. A., Jackson M., Stapley E. O., Miller T. W., Miller A. K., Hendlin D., Mochales S. Thienamycin, a new beta-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J Antibiot (Tokyo) 1979 Jan;32(1):1–12. doi: 10.7164/antibiotics.32.1. [DOI] [PubMed] [Google Scholar]
  10. Kimura Y., Motokawa K., Nagata H., Kameda Y., Matsuura S., Mayama M., Yoshida T. Asparenomycins A, B and C, new carbapenem antibiotics. IV. Antibacterial activity. J Antibiot (Tokyo) 1982 Jan;35(1):32–38. doi: 10.7164/antibiotics.35.32. [DOI] [PubMed] [Google Scholar]
  11. Kropp H., Sundelof J. G., Hajdu R., Kahan F. M. Metabolism of thienamycin and related carbapenem antibiotics by the renal dipeptidase, dehydropeptidase. Antimicrob Agents Chemother. 1982 Jul;22(1):62–70. doi: 10.1128/aac.22.1.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Mikami H., Ogashiwa M., Saino Y., Inoue M., Mitsuhashi S. Comparative stability of newly introduced beta-lactam antibiotics to renal dipeptidase. Antimicrob Agents Chemother. 1982 Oct;22(4):693–695. doi: 10.1128/aac.22.4.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nakayama M., Iwasaki A., Kimura S., Mizoguchi T., Tanabe S., Murakami A., Watanabe I., Okuchi M., Itoh H., Saino Y. Carpetimycins A and B, new beta-lactam antibiotics. J Antibiot (Tokyo) 1980 Nov;33(11):1388–1390. doi: 10.7164/antibiotics.33.1388. [DOI] [PubMed] [Google Scholar]
  15. Norrby S. R., Alestig K., Björnegård B., Burman L. A., Ferber F., Huber J. L., Jones K. H., Kahan F. M., Kahan J. S., Kropp H. Urinary recovery of N-formimidoyl thienamycin (MK0787) as affected by coadministration of N-formimidoyl thienamycin dehydropeptidase inhibitors. Antimicrob Agents Chemother. 1983 Feb;23(2):300–307. doi: 10.1128/aac.23.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Saino Y., Kobayashi F., Inoue M., Mitsuhashi S. Purification and properties of inducible penicillin beta-lactamase isolated from Pseudomonas maltophilia. Antimicrob Agents Chemother. 1982 Oct;22(4):564–570. doi: 10.1128/aac.22.4.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sato K., Fujii T., Okamoto R., Inoue M., Mitsuhashi S. Biochemical properties of beta-lactamase produced by Flavobacterium odoratum. Antimicrob Agents Chemother. 1985 Apr;27(4):612–614. doi: 10.1128/aac.27.4.612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sugiura M., Ito Y., Hirano K., Sawaki S. Purification and properties of human kidney dipeptidases. Biochim Biophys Acta. 1978 Feb 10;522(2):541–550. doi: 10.1016/0005-2744(78)90086-4. [DOI] [PubMed] [Google Scholar]
  19. Yotsuji A., Minami S., Inoue M., Mitsuhashi S. Properties of novel beta-lactamase produced by Bacteroides fragilis. Antimicrob Agents Chemother. 1983 Dec;24(6):925–929. doi: 10.1128/aac.24.6.925. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES