Abstract
The stability of meropenem in the presence of renal dehydropeptidase I (DHP-I) varied extremely with the animal source of the enzyme. Meropenem, compared with imipenem, was rather easily hydrolyzed by DHP-Is from mice, rabbits, and monkeys, while it showed a higher resistance to guinea pig and beagle dog DHP-Is. In addition, meropenem was four times more resistant than imipenem to human DHP-I. The 1 beta-methyl substituent on carbapenems, i.e., meropenem and 1 beta-methyl imipenem, made them considerably more resistant to mouse and swine DHP-Is than the 1-unsubstituted derivatives are.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bakken J. S., Sanders C. C., Clark R. B., Hori M. Beta-lactam resistance in Aeromonas spp. caused by inducible beta-lactamases active against penicillins, cephalosporins, and carbapenems. Antimicrob Agents Chemother. 1988 Sep;32(9):1314–1319. doi: 10.1128/aac.32.9.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bax R. P., Bastain W., Featherstone A., Wilkinson D. M., Hutchison M., Haworth S. J. The pharmacokinetics of meropenem in volunteers. J Antimicrob Chemother. 1989 Sep;24 (Suppl A):311–320. doi: 10.1093/jac/24.suppl_a.311. [DOI] [PubMed] [Google Scholar]
- Brown A. G., Corbett D. F., Eglington A. J., Howarth T. T. Structures of olivanic acid derivatives MM 22380, MM 22381, MM 22382 and MM 22383; four new antibiotics isolated from Streptomyces olivaceus. J Antibiot (Tokyo) 1979 Sep;32(9):961–963. doi: 10.7164/antibiotics.32.961. [DOI] [PubMed] [Google Scholar]
- Campbell B. J., Lin Y. C., Davis R. V., Ballew E. The purification and properties of a particulate renal dipeptidase. Biochim Biophys Acta. 1966 May 5;118(2):371–386. doi: 10.1016/s0926-6593(66)80046-2. [DOI] [PubMed] [Google Scholar]
- Cuchural G. J., Jr, Malamy M. H., Tally F. P. Beta-lactamase-mediated imipenem resistance in Bacteroides fragilis. Antimicrob Agents Chemother. 1986 Nov;30(5):645–648. doi: 10.1128/aac.30.5.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison M. P., Moss S. R., Featherstone A., Fowkes A. G., Sanders A. M., Case D. E. The disposition and metabolism of meropenem in laboratory animals and man. J Antimicrob Chemother. 1989 Sep;24 (Suppl A):265–277. doi: 10.1093/jac/24.suppl_a.265. [DOI] [PubMed] [Google Scholar]
- Hirota T., Nishikawa Y., Tanaka M., Fukuda K., Igarashi T., Kitagawa H. Localization of dehydropeptidase-I, an enzyme processing glutathione, in the rat kidney. J Biochem. 1987 Sep;102(3):547–550. doi: 10.1093/oxfordjournals.jbchem.a122087. [DOI] [PubMed] [Google Scholar]
- Hirota T., Nishikawa Y., Tanaka M., Igarashi T., Kitagawa H. Characterization of dehydropeptidase I in the rat lung. Eur J Biochem. 1986 Nov 3;160(3):521–525. doi: 10.1111/j.1432-1033.1986.tb10070.x. [DOI] [PubMed] [Google Scholar]
- Kahan J. S., Kahan F. M., Goegelman R., Currie S. A., Jackson M., Stapley E. O., Miller T. W., Miller A. K., Hendlin D., Mochales S. Thienamycin, a new beta-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J Antibiot (Tokyo) 1979 Jan;32(1):1–12. doi: 10.7164/antibiotics.32.1. [DOI] [PubMed] [Google Scholar]
- Kimura Y., Motokawa K., Nagata H., Kameda Y., Matsuura S., Mayama M., Yoshida T. Asparenomycins A, B and C, new carbapenem antibiotics. IV. Antibacterial activity. J Antibiot (Tokyo) 1982 Jan;35(1):32–38. doi: 10.7164/antibiotics.35.32. [DOI] [PubMed] [Google Scholar]
- Kropp H., Sundelof J. G., Hajdu R., Kahan F. M. Metabolism of thienamycin and related carbapenem antibiotics by the renal dipeptidase, dehydropeptidase. Antimicrob Agents Chemother. 1982 Jul;22(1):62–70. doi: 10.1128/aac.22.1.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Mikami H., Ogashiwa M., Saino Y., Inoue M., Mitsuhashi S. Comparative stability of newly introduced beta-lactam antibiotics to renal dipeptidase. Antimicrob Agents Chemother. 1982 Oct;22(4):693–695. doi: 10.1128/aac.22.4.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakayama M., Iwasaki A., Kimura S., Mizoguchi T., Tanabe S., Murakami A., Watanabe I., Okuchi M., Itoh H., Saino Y. Carpetimycins A and B, new beta-lactam antibiotics. J Antibiot (Tokyo) 1980 Nov;33(11):1388–1390. doi: 10.7164/antibiotics.33.1388. [DOI] [PubMed] [Google Scholar]
- Norrby S. R., Alestig K., Björnegård B., Burman L. A., Ferber F., Huber J. L., Jones K. H., Kahan F. M., Kahan J. S., Kropp H. Urinary recovery of N-formimidoyl thienamycin (MK0787) as affected by coadministration of N-formimidoyl thienamycin dehydropeptidase inhibitors. Antimicrob Agents Chemother. 1983 Feb;23(2):300–307. doi: 10.1128/aac.23.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saino Y., Kobayashi F., Inoue M., Mitsuhashi S. Purification and properties of inducible penicillin beta-lactamase isolated from Pseudomonas maltophilia. Antimicrob Agents Chemother. 1982 Oct;22(4):564–570. doi: 10.1128/aac.22.4.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato K., Fujii T., Okamoto R., Inoue M., Mitsuhashi S. Biochemical properties of beta-lactamase produced by Flavobacterium odoratum. Antimicrob Agents Chemother. 1985 Apr;27(4):612–614. doi: 10.1128/aac.27.4.612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugiura M., Ito Y., Hirano K., Sawaki S. Purification and properties of human kidney dipeptidases. Biochim Biophys Acta. 1978 Feb 10;522(2):541–550. doi: 10.1016/0005-2744(78)90086-4. [DOI] [PubMed] [Google Scholar]
- Yotsuji A., Minami S., Inoue M., Mitsuhashi S. Properties of novel beta-lactamase produced by Bacteroides fragilis. Antimicrob Agents Chemother. 1983 Dec;24(6):925–929. doi: 10.1128/aac.24.6.925. [DOI] [PMC free article] [PubMed] [Google Scholar]