Abstract
In order to define the serial morphologic correlates of unmodified first-set cardiac allograft rejection in an inbred rat strain combination, a series of Wistar-Furth cardiac allografts transplanted to normal nonsensitized Lewis recipients were studied as a function of time with the use of well-documented ultrastructural tracer techniques. Colloidial carbon was employed as a vascular label for detection of microvascular endothelial structural alterations, and horseradish peroxidase was used as a tracer probe for localization of cell-membrane permeability dysfunction of allograft endothelium and cardiocytes as well as of elements of the cellular infiltrate. Wistar-Furth to Wistar-Furth syngeneic heart grafts and Wistar-Furth recipients' own hearts provided appropriate control data. This study was demonstrated that severe diffuse loss of functional and structural integrity of the microvascular endothelium precedes the development of extensive damage to cardiac muscle cells and thus provides strong evidence that the allograft microcirculation is the primary target of immunologic injury. In addition, the sequential pattern of injurious changes present in the rejecting allografts was similar to that observed in certain models of delayed-type hypersensitivity and of skin graft rejection, raising the possibility that lymphokine-mediated mechanisms may be of major pathogenetic significance in this setting.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson N. D., Wyllie R. G., Shaker I. J. Pathogenesis of vascular injury in rejecting rat renal allografts. Johns Hopkins Med J. 1977 Sep;141(3):135–147. [PubMed] [Google Scholar]
- Beelen R. H., Broekhuis-Fluitsma D. M., Korn C., Hoefsmit C. M. Identification of exudate-resident macrophages on the basis of peroxidatic activity. J Reticuloendothel Soc. 1978 Feb;23(2):103–110. [PubMed] [Google Scholar]
- Carpenter C. B., d'Apice A. J., Abbas A. K. The role of antibodies in the rejection and enhancement of organ allografts.?7318. Adv Immunol. 1976;22:1–65. doi: 10.1016/s0065-2776(08)60547-7. [DOI] [PubMed] [Google Scholar]
- Christmas S. E., MacPherson G. G. The role of mononuclear phagocytes in cardiac allograft rejection in the rat. I. Ultrastructural and cytochemical features. Cell Immunol. 1982 May 15;69(2):248–270. doi: 10.1016/0008-8749(82)90071-5. [DOI] [PubMed] [Google Scholar]
- Christmas S. E., MacPherson G. G. The role of mononuclear phagocytes in cardiac allograft rejection in the rat. II. Characterization of mononuclear phagocytes extracted from rat cardiac allografts. Cell Immunol. 1982 May 15;69(2):271–280. doi: 10.1016/0008-8749(82)90072-7. [DOI] [PubMed] [Google Scholar]
- Christmas S. E., MacPherson G. G. The role of mononuclear phagocytes in cardiac allograft rejection in the rat. III. The effect of cells extracted from rat cardiac allografts upon beating heart cell cultures. Cell Immunol. 1982 May 15;69(2):281–290. doi: 10.1016/0008-8749(82)90073-9. [DOI] [PubMed] [Google Scholar]
- Colvin R. B., Johnson R. A., Mihm M. C., Jr, Dvorak H. F. Role of the clotting system in cell-mediated hypersensitivity. I. Fibrin deposition in delayed skin reactions in man. J Exp Med. 1973 Sep 1;138(3):686–698. doi: 10.1084/jem.138.3.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cotran K. S., Karnovsky M. J. Vascular leakage induced by horseradish peroxidase in the rat. Proc Soc Exp Biol Med. 1967 Nov;126(2):557–561. doi: 10.3181/00379727-126-32504. [DOI] [PubMed] [Google Scholar]
- Cotran R. S., Karnovsky M. J., Goth A. Resistance of Wistar-Furth rats to the mast cell-damaging effect of horseradish peroxidase. J Histochem Cytochem. 1968 May;16(5):382–383. doi: 10.1177/16.5.382. [DOI] [PubMed] [Google Scholar]
- Cotran R. S., Litt M. Ultrastructural localization of horseradish peroxidase and endogenous peroxidase activity in guinea pig peritoneal macrophages. J Immunol. 1970 Dec;105(6):1536–1546. [PubMed] [Google Scholar]
- Cotran R. S., Suter E. R., Majno G. The use of colloidal carbon as a tracer for vascular injury. A review. Vasc Dis. 1967 Apr;4(2):107–127. [PubMed] [Google Scholar]
- Cotran R. S. The endothelium and inflammation: new insights. Monogr Pathol. 1982;(23):18–37. [PubMed] [Google Scholar]
- Dallman M. J., Mason D. W., Webb M. The roles of host and donor cells in the rejection of skin allografts by T cell-deprived rats injected with syngeneic T cells. Eur J Immunol. 1982 Jun;12(6):511–518. doi: 10.1002/eji.1830120612. [DOI] [PubMed] [Google Scholar]
- Dannenberg A. M., Jr, Ando M., Shima K. Macrophage accumulation, division, maturation, and digestive and microbicidal capacities in tuberculous lesions. 3. The turnover of macrophages and its relation to their activation and antimicrobial immunity in primary BCG lesions and those of reinfection. J Immunol. 1972 Nov;109(5):1109–1121. [PubMed] [Google Scholar]
- Dvorak A. M., Mihm M. C., Jr, Dvorak H. F. Morphology of delayed-type hypersensitivity reactions in man. II. Ultrastructural alterations affecting the microvasculature and the tissue mast cells. Lab Invest. 1976 Feb;34(2):179–191. [PubMed] [Google Scholar]
- Dvorak H. F., Mihm M. C., Jr, Dvorak A. M., Barnes B. A., Galli S. J. The microvasculature is the critical target of the immune response in vascularized skin allograft rejection. J Invest Dermatol. 1980 May;74(5):280–284. doi: 10.1111/1523-1747.ep12543418. [DOI] [PubMed] [Google Scholar]
- Dvorak H. F., Mihm M. C., Jr, Dvorak A. M., Barnes B. A., Manseau E. J., Galli S. J. Rejection of first-set skin allografts in man. the microvasculature is the critical target of the immune response. J Exp Med. 1979 Aug 1;150(2):322–337. doi: 10.1084/jem.150.2.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forbes R. D., Guttmann R. D. Evidence for complement-induced endothelial injury in vivo: a comparative ultrastructural tracer study in a controlled model of hyperacute rat cardiac allograft rejection. Am J Pathol. 1982 Mar;106(3):378–387. [PMC free article] [PubMed] [Google Scholar]
- Guttmann R. D. Immunologic models to study cardiac allograft rejection and prolongation. Transplant Proc. 1976 Mar;8(1):31–35. [PubMed] [Google Scholar]
- Hall B. M., Dorsch S., Roser B. The cellular basis of allograft rejection in vivo. I. The cellular requirements for first-set rejection of heart grafts. J Exp Med. 1978 Oct 1;148(4):878–889. doi: 10.1084/jem.148.4.878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loveland B. E., Hogarth P. M., Ceredig R., McKenzie I. F. Cells mediating graft rejection in the mouse. I. Lyt-1 cells mediate skin graft rejection. J Exp Med. 1981 May 1;153(5):1044–1057. doi: 10.1084/jem.153.5.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loveland B. E., McKenzie I. F. Which T cells cause graft rejection? Transplantation. 1982 Mar;33(3):217–221. doi: 10.1097/00007890-198203000-00001. [DOI] [PubMed] [Google Scholar]
- Pedersen N. C., Morris B. The role of the lymphatic system in the rejection of homografts: a study of lymph from renal transplants. J Exp Med. 1970 May 1;131(5):936–969. doi: 10.1084/jem.131.5.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polverini P. J., Cotran R. S., Sholley M. M. Endothelial proliferation in the delayed hypersensitivity reaction: an autoradiographic study. J Immunol. 1977 Feb;118(2):529–532. [PubMed] [Google Scholar]
- Rhodin J. A. Ultrastructure of mammalian venous capillaries, venules, and small collecting veins. J Ultrastruct Res. 1968 Dec;25(5):452–500. doi: 10.1016/s0022-5320(68)80098-x. [DOI] [PubMed] [Google Scholar]
- Rona G., Badonnel M. C., Hüttner I., Bier C., Boutet M. Reperfusion effect upon ischemic myocardial injury. Exp Mol Pathol. 1979 Aug;31(1):211–218. doi: 10.1016/0014-4800(79)90022-4. [DOI] [PubMed] [Google Scholar]
- Sholley M. M., Cavallo T., Cotran R. S. Endothelial proliferation in inflammation. I. Autoradiographic studies following thermal injury to the skin of normal rats. Am J Pathol. 1977 Nov;89(2):277–296. [PMC free article] [PubMed] [Google Scholar]
- Smith J. B., McIntosh G. H., Morris B. The migration of cells through chronically inflamed tissues. J Pathol. 1970 Jan;100(1):21–29. doi: 10.1002/path.1711000104. [DOI] [PubMed] [Google Scholar]
- Spector W. G., Lykke A. W. The cellular evolution of inflammatory granulomata. J Pathol Bacteriol. 1966 Jul;92(1):163–167. doi: 10.1002/path.1700920117. [DOI] [PubMed] [Google Scholar]
- Tilney N. L., Strom T. B., Macpherson S. G., Carpenter C. B. Studies on infiltrating host cells harvested from acutely rejecting rat cardiac allografts. Surgery. 1976 Feb;79(02):209–217. [PubMed] [Google Scholar]
- Tilney N. L. The extent of immunological injury to the vasculature of cardiac allografts in the rat. Transplantation. 1974 Jun;17(6):561–567. doi: 10.1097/00007890-197406000-00003. [DOI] [PubMed] [Google Scholar]
- Wiener J., Lattes R. G., Spiro D. An electron microscopic study of leukocyte emigration and vascular permeability in tuberculin sensitivity. Am J Pathol. 1967 Mar;50(3):485–521. [PMC free article] [PubMed] [Google Scholar]
- Wissig S. L., Williams M. C. Permeability of muscle capillaries to microperoxidase. J Cell Biol. 1978 Feb;76(2):341–359. doi: 10.1083/jcb.76.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]