Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Jun;71(6):4319–4330. doi: 10.1128/jvi.71.6.4319-4330.1997

Antibodies with specificity to native gp120 and neutralization activity against primary human immunodeficiency virus type 1 isolates elicited by immunization with oligomeric gp160.

T C VanCott 1, J R Mascola 1, R W Kaminski 1, V Kalyanaraman 1, P L Hallberg 1, P R Burnett 1, J T Ulrich 1, D J Rechtman 1, D L Birx 1
PMCID: PMC191648  PMID: 9151820

Abstract

Current human immunodeficiency virus type 1 (HIV-1) envelope vaccine candidates elicit high antibody binding titers with neutralizing activity against T-cell line-adapted but not primary HIV-1 isolates. Serum antibodies from these human vaccine recipients were also found to be preferentially directed to linear epitopes within gp120 that are poorly exposed on native gp120. Systemic immunization of rabbits with an affinity-purified oligomeric gp160 protein formulated with either Alhydrogel or monophosphoryl lipid A-containing adjuvants resulted in the induction of high-titered serum antibodies that preferentially bound epitopes exposed on native forms of gp120 and gp160, recognized a restricted number of linear epitopes, efficiently bound heterologous strains of monomeric gp120 and cell surface-expressed oligomeric gp120/gp41, and neutralized several strains of T-cell line-adapted HIV-1. Additionally, those immune sera with the highest oligomeric gp160 antibody binding titers had neutralizing activity against some primary HIV-1 isolates, using phytohemagglutinin-stimulated peripheral blood mononuclear cell targets. Induction of an antibody response preferentially reactive with natively folded gp120/gp160 was dependent on the tertiary structure of the HIV-1 envelope immunogen as well as its adjuvant formulation, route of administration, and number of immunizations administered. These studies demonstrate the capacity of a soluble HIV-1 envelope glycoprotein vaccine to elicit an antibody response capable of neutralizing primary HIV-1 isolates.

Full Text

The Full Text of this article is available as a PDF (303.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashkenazi A., Smith D. H., Marsters S. A., Riddle L., Gregory T. J., Ho D. D., Capon D. J. Resistance of primary isolates of human immunodeficiency virus type 1 to soluble CD4 is independent of CD4-rgp120 binding affinity. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7056–7060. doi: 10.1073/pnas.88.16.7056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barrett N., Eder G., Dorner F. Characterization of a vaccinia-derived recombinant HIV-1 gp160 candidate vaccine and its immunogenicity in chimpanzees. Biotechnol Ther. 1991;2(1-2):91–106. [PubMed] [Google Scholar]
  3. Belshe R. B., Clements M. L., Dolin R., Graham B. S., McElrath J., Gorse G. J., Schwartz D., Keefer M. C., Wright P., Corey L. Safety and immunogenicity of a fully glycosylated recombinant gp160 human immunodeficiency virus type 1 vaccine in subjects at low risk of infection. National Institute of Allergy and Infectious Diseases AIDS Vaccine Evaluation Group Network. J Infect Dis. 1993 Dec;168(6):1387–1395. doi: 10.1093/infdis/168.6.1387. [DOI] [PubMed] [Google Scholar]
  4. Belshe R. B., Graham B. S., Keefer M. C., Gorse G. J., Wright P., Dolin R., Matthews T., Weinhold K., Bolognesi D. P., Sposto R. Neutralizing antibodies to HIV-1 in seronegative volunteers immunized with recombinant gp120 from the MN strain of HIV-1. NIAID AIDS Vaccine Clinical Trials Network. JAMA. 1994 Aug 10;272(6):475–480. doi: 10.1001/jama.272.6.475. [DOI] [PubMed] [Google Scholar]
  5. Berzofsky J. A., Schechter A. N., Kon H. Does Freund's adjuvant denature protein antigens? EPR studies of emulsified hemoglobin. J Immunol. 1976 Feb;116(2):270–272. [PubMed] [Google Scholar]
  6. Bou-Habib D. C., Roderiquez G., Oravecz T., Berman P. W., Lusso P., Norcross M. A. Cryptic nature of envelope V3 region epitopes protects primary monocytotropic human immunodeficiency virus type 1 from antibody neutralization. J Virol. 1994 Sep;68(9):6006–6013. doi: 10.1128/jvi.68.9.6006-6013.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brighty D. W., Rosenberg M., Chen I. S., Ivey-Hoyle M. Envelope proteins from clinical isolates of human immunodeficiency virus type 1 that are refractory to neutralization by soluble CD4 possess high affinity for the CD4 receptor. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7802–7805. doi: 10.1073/pnas.88.17.7802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burton D. R., Pyati J., Koduri R., Sharp S. J., Thornton G. B., Parren P. W., Sawyer L. S., Hendry R. M., Dunlop N., Nara P. L. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science. 1994 Nov 11;266(5187):1024–1027. doi: 10.1126/science.7973652. [DOI] [PubMed] [Google Scholar]
  9. Cocchi F., DeVico A. L., Garzino-Demo A., Arya S. K., Gallo R. C., Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science. 1995 Dec 15;270(5243):1811–1815. doi: 10.1126/science.270.5243.1811. [DOI] [PubMed] [Google Scholar]
  10. Cooney E. L., Collier A. C., Greenberg P. D., Coombs R. W., Zarling J., Arditti D. E., Hoffman M. C., Hu S. L., Corey L. Safety of and immunological response to a recombinant vaccinia virus vaccine expressing HIV envelope glycoprotein. Lancet. 1991 Mar 9;337(8741):567–572. doi: 10.1016/0140-6736(91)91636-9. [DOI] [PubMed] [Google Scholar]
  11. Cooney E. L., McElrath M. J., Corey L., Hu S. L., Collier A. C., Arditti D., Hoffman M., Coombs R. W., Smith G. E., Greenberg P. D. Enhanced immunity to human immunodeficiency virus (HIV) envelope elicited by a combined vaccine regimen consisting of priming with a vaccinia recombinant expressing HIV envelope and boosting with gp160 protein. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1882–1886. doi: 10.1073/pnas.90.5.1882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Daar E. S., Li X. L., Moudgil T., Ho D. D. High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6574–6578. doi: 10.1073/pnas.87.17.6574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Durda P. J., Bacheler L., Clapham P., Jenoski A. M., Leece B., Matthews T. J., McKnight A., Pomerantz R., Rayner M., Weinhold K. J. HIV-1 neutralizing monoclonal antibodies induced by a synthetic peptide. AIDS Res Hum Retroviruses. 1990 Sep;6(9):1115–1123. doi: 10.1089/aid.1990.6.1115. [DOI] [PubMed] [Google Scholar]
  14. Earl P. L., Doms R. W., Moss B. Oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein. Proc Natl Acad Sci U S A. 1990 Jan;87(2):648–652. doi: 10.1073/pnas.87.2.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fägerstam L. G., Frostell-Karlsson A., Karlsson R., Persson B., Rönnberg I. Biospecific interaction analysis using surface plasmon resonance detection applied to kinetic, binding site and concentration analysis. J Chromatogr. 1992 Apr 24;597(1-2):397–410. doi: 10.1016/0021-9673(92)80137-j. [DOI] [PubMed] [Google Scholar]
  16. Getchell J. P., Heath J. L., Hicks D. R., Sporborg C., McGrath C. R., Kalyanaraman V. S. Continuous production of a cytopathic human T-lymphotropic virus in a permissive neoplastic T-cell line. J Clin Microbiol. 1986 Apr;23(4):737–742. doi: 10.1128/jcm.23.4.737-742.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gorny M. K., Moore J. P., Conley A. J., Karwowska S., Sodroski J., Williams C., Burda S., Boots L. J., Zolla-Pazner S. Human anti-V2 monoclonal antibody that neutralizes primary but not laboratory isolates of human immunodeficiency virus type 1. J Virol. 1994 Dec;68(12):8312–8320. doi: 10.1128/jvi.68.12.8312-8320.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Graham B. S., Belshe R. B., Clements M. L., Dolin R., Corey L., Wright P. F., Gorse G. J., Midthun K., Keefer M. C., Roberts N. J., Jr Vaccination of vaccinia-naive adults with human immunodeficiency virus type 1 gp160 recombinant vaccinia virus in a blinded, controlled, randomized clinical trial. The AIDS Vaccine Clinical Trials Network. J Infect Dis. 1992 Aug;166(2):244–252. doi: 10.1093/infdis/166.2.244. [DOI] [PubMed] [Google Scholar]
  19. Graham B. S., Matthews T. J., Belshe R. B., Clements M. L., Dolin R., Wright P. F., Gorse G. J., Schwartz D. H., Keefer M. C., Bolognesi D. P. Augmentation of human immunodeficiency virus type 1 neutralizing antibody by priming with gp160 recombinant vaccinia and boosting with rgp160 in vaccinia-naive adults. The NIAID AIDS Vaccine Clinical Trials Network. J Infect Dis. 1993 Mar;167(3):533–537. doi: 10.1093/infdis/167.3.533. [DOI] [PubMed] [Google Scholar]
  20. Haigwood N. L., Nara P. L., Brooks E., Van Nest G. A., Ott G., Higgins K. W., Dunlop N., Scandella C. J., Eichberg J. W., Steimer K. S. Native but not denatured recombinant human immunodeficiency virus type 1 gp120 generates broad-spectrum neutralizing antibodies in baboons. J Virol. 1992 Jan;66(1):172–182. doi: 10.1128/jvi.66.1.172-182.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hanson C. V. Measuring vaccine-induced HIV neutralization: report of a workshop. AIDS Res Hum Retroviruses. 1994 Jun;10(6):645–648. doi: 10.1089/aid.1994.10.645. [DOI] [PubMed] [Google Scholar]
  22. Kahn J. O., Sinangil F., Baenziger J., Murcar N., Wynne D., Coleman R. L., Steimer K. S., Dekker C. L., Chernoff D. Clinical and immunologic responses to human immunodeficiency virus (HIV) type 1SF2 gp120 subunit vaccine combined with MF59 adjuvant with or without muramyl tripeptide dipalmitoyl phosphatidylethanolamine in non-HIV-infected human volunteers. J Infect Dis. 1994 Nov;170(5):1288–1291. doi: 10.1093/infdis/170.5.1288. [DOI] [PubMed] [Google Scholar]
  23. Kalyanaraman V. S., Pal R., Gallo R. C., Sarngadharan M. G. A unique human immunodeficiency virus culture secreting soluble gp160. AIDS Res Hum Retroviruses. 1988 Oct;4(5):319–329. doi: 10.1089/aid.1988.4.319. [DOI] [PubMed] [Google Scholar]
  24. Kalyanaraman V. S., Rodriguez V., Veronese F., Rahman R., Lusso P., DeVico A. L., Copeland T., Oroszlan S., Gallo R. C., Sarngadharan M. G. Characterization of the secreted, native gp120 and gp160 of the human immunodeficiency virus type 1. AIDS Res Hum Retroviruses. 1990 Mar;6(3):371–380. doi: 10.1089/aid.1990.6.371. [DOI] [PubMed] [Google Scholar]
  25. Karlsson R., Michaelsson A., Mattsson L. Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. J Immunol Methods. 1991 Dec 15;145(1-2):229–240. doi: 10.1016/0022-1759(91)90331-9. [DOI] [PubMed] [Google Scholar]
  26. Keefer M. C., Graham B. S., Belshe R. B., Schwartz D., Corey L., Bolognesi D. P., Stablein D. M., Montefiori D. C., McElrath M. J., Clements M. L. Studies of high doses of a human immunodeficiency virus type 1 recombinant glycoprotein 160 candidate vaccine in HIV type 1-seronegative humans. The AIDS Vaccine Clinical Trials Network. AIDS Res Hum Retroviruses. 1994 Dec;10(12):1713–1723. doi: 10.1089/aid.1994.10.1713. [DOI] [PubMed] [Google Scholar]
  27. Keefer M. C., Graham B. S., McElrath M. J., Matthews T. J., Stablein D. M., Corey L., Wright P. F., Lawrence D., Fast P. E., Weinhold K. Safety and immunogenicity of Env 2-3, a human immunodeficiency virus type 1 candidate vaccine, in combination with a novel adjuvant, MTP-PE/MF59. NIAID AIDS Vaccine Evaluation Group. AIDS Res Hum Retroviruses. 1996 May 20;12(8):683–693. doi: 10.1089/aid.1996.12.683. [DOI] [PubMed] [Google Scholar]
  28. Kovacs J. A., Vasudevachari M. B., Easter M., Davey R. T., Falloon J., Polis M. A., Metcalf J. A., Salzman N., Baseler M., Smith G. E. Induction of humoral and cell-mediated anti-human immunodeficiency virus (HIV) responses in HIV sero-negative volunteers by immunization with recombinant gp160. J Clin Invest. 1993 Aug;92(2):919–928. doi: 10.1172/JCI116667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Leonard C. K., Spellman M. W., Riddle L., Harris R. J., Thomas J. N., Gregory T. J. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem. 1990 Jun 25;265(18):10373–10382. [PubMed] [Google Scholar]
  30. Louwagie J., Delwart E. L., Mullins J. I., McCutchan F. E., Eddy G., Burke D. S. Genetic analysis of HIV-1 isolates from Brazil reveals presence of two distinct genetic subtypes. AIDS Res Hum Retroviruses. 1994 May;10(5):561–567. doi: 10.1089/aid.1994.10.561. [DOI] [PubMed] [Google Scholar]
  31. Mascola J. R., Louwagie J., McCutchan F. E., Fischer C. L., Hegerich P. A., Wagner K. F., Fowler A. K., McNeil J. G., Burke D. S. Two antigenically distinct subtypes of human immunodeficiency virus type 1: viral genotype predicts neutralization serotype. J Infect Dis. 1994 Jan;169(1):48–54. doi: 10.1093/infdis/169.1.48. [DOI] [PubMed] [Google Scholar]
  32. Mascola J. R., Snyder S. W., Weislow O. S., Belay S. M., Belshe R. B., Schwartz D. H., Clements M. L., Dolin R., Graham B. S., Gorse G. J. Immunization with envelope subunit vaccine products elicits neutralizing antibodies against laboratory-adapted but not primary isolates of human immunodeficiency virus type 1. The National Institute of Allergy and Infectious Diseases AIDS Vaccine Evaluation Group. J Infect Dis. 1996 Feb;173(2):340–348. doi: 10.1093/infdis/173.2.340. [DOI] [PubMed] [Google Scholar]
  33. Matthews T. J. Dilemma of neutralization resistance of HIV-1 field isolates and vaccine development. AIDS Res Hum Retroviruses. 1994 Jun;10(6):631–632. doi: 10.1089/aid.1994.10.631. [DOI] [PubMed] [Google Scholar]
  34. Moore J. P., Burkly L. C., Connor R. I., Cao Y., Tizard R., Ho D. D., Fisher R. A. Adaptation of two primary human immunodeficiency virus type 1 isolates to growth in transformed T cell lines correlates with alterations in the responses of their envelope glycoproteins to soluble CD4. AIDS Res Hum Retroviruses. 1993 Jun;9(6):529–539. doi: 10.1089/aid.1993.9.529. [DOI] [PubMed] [Google Scholar]
  35. Moore J. P., Cao Y., Qing L., Sattentau Q. J., Pyati J., Koduri R., Robinson J., Barbas C. F., 3rd, Burton D. R., Ho D. D. Primary isolates of human immunodeficiency virus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120, and their neutralization is not predicted by studies with monomeric gp120. J Virol. 1995 Jan;69(1):101–109. doi: 10.1128/jvi.69.1.101-109.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Moore J. P., Ho D. D. Antibodies to discontinuous or conformationally sensitive epitopes on the gp120 glycoprotein of human immunodeficiency virus type 1 are highly prevalent in sera of infected humans. J Virol. 1993 Feb;67(2):863–875. doi: 10.1128/jvi.67.2.863-875.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Moore J. P., McKeating J. A., Huang Y. X., Ashkenazi A., Ho D. D. Virions of primary human immunodeficiency virus type 1 isolates resistant to soluble CD4 (sCD4) neutralization differ in sCD4 binding and glycoprotein gp120 retention from sCD4-sensitive isolates. J Virol. 1992 Jan;66(1):235–243. doi: 10.1128/jvi.66.1.235-243.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Moore J. P., McKeating J. A., Jones I. M., Stephens P. E., Clements G., Thomson S., Weiss R. A. Characterization of recombinant gp120 and gp160 from HIV-1: binding to monoclonal antibodies and soluble CD4. AIDS. 1990 Apr;4(4):307–315. doi: 10.1097/00002030-199004000-00004. [DOI] [PubMed] [Google Scholar]
  39. Moore J. P., Sattentau Q. J., Wyatt R., Sodroski J. Probing the structure of the human immunodeficiency virus surface glycoprotein gp120 with a panel of monoclonal antibodies. J Virol. 1994 Jan;68(1):469–484. doi: 10.1128/jvi.68.1.469-484.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Moore J. P., Sodroski J. Antibody cross-competition analysis of the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein. J Virol. 1996 Mar;70(3):1863–1872. doi: 10.1128/jvi.70.3.1863-1872.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Muster T., Steindl F., Purtscher M., Trkola A., Klima A., Himmler G., Rüker F., Katinger H. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol. 1993 Nov;67(11):6642–6647. doi: 10.1128/jvi.67.11.6642-6647.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Nair B. C., Ford G., Kalyanaraman V. S., Zafari M., Fang C., Sarngadharan M. G. Enzyme immunoassay using native envelope glycoprotein (gp160) for detection of human immunodeficiency virus type 1 antibodies. J Clin Microbiol. 1994 Jun;32(6):1449–1456. doi: 10.1128/jcm.32.6.1449-1456.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Orentas R. J., Hildreth J. E., Obah E., Polydefkis M., Smith G. E., Clements M. L., Siliciano R. F. Induction of CD4+ human cytolytic T cells specific for HIV-infected cells by a gp160 subunit vaccine. Science. 1990 Jun 8;248(4960):1234–1237. doi: 10.1126/science.2190315. [DOI] [PubMed] [Google Scholar]
  44. Pinter A., Honnen W. J., Tilley S. A., Bona C., Zaghouani H., Gorny M. K., Zolla-Pazner S. Oligomeric structure of gp41, the transmembrane protein of human immunodeficiency virus type 1. J Virol. 1989 Jun;63(6):2674–2679. doi: 10.1128/jvi.63.6.2674-2679.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Ratto S., Sitz K. V., Scherer A. M., Manca F., Loomis L. D., Cox J. H., Redfield R. R., Birx D. L. Establishment and characterization of human immunodeficiency virus type 1 (HIV-1) envelope-specific CD4+ T lymphocyte lines from HIV-1-seropositive patients. J Infect Dis. 1995 Jun;171(6):1420–1430. doi: 10.1093/infdis/171.6.1420. [DOI] [PubMed] [Google Scholar]
  46. Redfield R. R., Birx D. L., Ketter N., Tramont E., Polonis V., Davis C., Brundage J. F., Smith G., Johnson S., Fowler A. A phase I evaluation of the safety and immunogenicity of vaccination with recombinant gp160 in patients with early human immunodeficiency virus infection. Military Medical Consortium for Applied Retroviral Research. N Engl J Med. 1991 Jun 13;324(24):1677–1684. doi: 10.1056/NEJM199106133242401. [DOI] [PubMed] [Google Scholar]
  47. Robb M. L., Polonis V., Vahey M., Gartner S., Michael N., Fowler A., Redfield R. R. HIV neutralization assay using polymerase chain reaction-derived molecular signals. J Acquir Immune Defic Syndr. 1992 Dec;5(12):1224–1229. [PubMed] [Google Scholar]
  48. Sattentau Q. J., Moore J. P. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J Exp Med. 1995 Jul 1;182(1):185–196. doi: 10.1084/jem.182.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sawyer L. S., Wrin M. T., Crawford-Miksza L., Potts B., Wu Y., Weber P. A., Alfonso R. D., Hanson C. V. Neutralization sensitivity of human immunodeficiency virus type 1 is determined in part by the cell in which the virus is propagated. J Virol. 1994 Mar;68(3):1342–1349. doi: 10.1128/jvi.68.3.1342-1349.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Schawaller M., Smith G. E., Skehel J. J., Wiley D. C. Studies with crosslinking reagents on the oligomeric structure of the env glycoprotein of HIV. Virology. 1989 Sep;172(1):367–369. doi: 10.1016/0042-6822(89)90142-6. [DOI] [PubMed] [Google Scholar]
  51. Schwartz D. H., Gorse G., Clements M. L., Belshe R., Izu A., Duliege A. M., Berman P., Twaddell T., Stablein D., Sposto R. Induction of HIV-1-neutralising and syncytium-inhibiting antibodies in uninfected recipients of HIV-1IIIB rgp120 subunit vaccine. Lancet. 1993 Jul 10;342(8863):69–73. doi: 10.1016/0140-6736(93)91283-r. [DOI] [PubMed] [Google Scholar]
  52. Scibienski R. J. Denaturation of lysozyme by Freund's complete adjuvant. J Immunol. 1973 Jul;111(1):114–120. [PubMed] [Google Scholar]
  53. Stamatatos L., Cheng-Mayer C. Structural modulations of the envelope gp120 glycoprotein of human immunodeficiency virus type 1 upon oligomerization and differential V3 loop epitope exposure of isolates displaying distinct tropism upon virion-soluble receptor binding. J Virol. 1995 Oct;69(10):6191–6198. doi: 10.1128/jvi.69.10.6191-6198.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Sullivan N., Sun Y., Li J., Hofmann W., Sodroski J. Replicative function and neutralization sensitivity of envelope glycoproteins from primary and T-cell line-passaged human immunodeficiency virus type 1 isolates. J Virol. 1995 Jul;69(7):4413–4422. doi: 10.1128/jvi.69.7.4413-4422.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Thomas D. J., Wall J. S., Hainfeld J. F., Kaczorek M., Booy F. P., Trus B. L., Eiserling F. A., Steven A. C. gp160, the envelope glycoprotein of human immunodeficiency virus type 1, is a dimer of 125-kilodalton subunits stabilized through interactions between their gp41 domains. J Virol. 1991 Jul;65(7):3797–3803. doi: 10.1128/jvi.65.7.3797-3803.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Trkola A., Pomales A. B., Yuan H., Korber B., Maddon P. J., Allaway G. P., Katinger H., Barbas C. F., 3rd, Burton D. R., Ho D. D. Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG. J Virol. 1995 Nov;69(11):6609–6617. doi: 10.1128/jvi.69.11.6609-6617.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Trkola A., Purtscher M., Muster T., Ballaun C., Buchacher A., Sullivan N., Srinivasan K., Sodroski J., Moore J. P., Katinger H. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol. 1996 Feb;70(2):1100–1108. doi: 10.1128/jvi.70.2.1100-1108.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Turner S., Tizard R., DeMarinis J., Pepinsky R. B., Zullo J., Schooley R., Fisher R. Resistance of primary isolates of human immunodeficiency virus type 1 to neutralization by soluble CD4 is not due to lower affinity with the viral envelope glycoprotein gp120. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1335–1339. doi: 10.1073/pnas.89.4.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. VanCott T. C., Bethke F. R., Burke D. S., Redfield R. R., Birx D. L. Lack of induction of antibodies specific for conserved, discontinuous epitopes of HIV-1 envelope glycoprotein by candidate AIDS vaccines. J Immunol. 1995 Oct 15;155(8):4100–4110. [PubMed] [Google Scholar]
  60. VanCott T. C., Bethke F. R., Kalyanaraman V., Burke D. S., Redfield R. R., Birx D. L. Preferential antibody recognition of structurally distinct HIV-1 gp120 molecules. J Acquir Immune Defic Syndr. 1994 Nov;7(11):1103–1115. [PubMed] [Google Scholar]
  61. VanCott T. C., Loomis L. D., Redfield R. R., Birx D. L. Real-time biospecific interaction analysis of antibody reactivity to peptides from the envelope glycoprotein, gp160, of HIV-1. J Immunol Methods. 1992 Feb 5;146(2):163–176. doi: 10.1016/0022-1759(92)90225-i. [DOI] [PubMed] [Google Scholar]
  62. VanCott T. C., Veit S. C., Kalyanaraman V., Earl P., Birx D. L. Characterization of a soluble, oligomeric HIV-1 gp160 protein as a potential immunogen. J Immunol Methods. 1995 Jun 14;183(1):103–117. doi: 10.1016/0022-1759(95)00038-c. [DOI] [PubMed] [Google Scholar]
  63. Vancott T. C., Polonis V. R., Loomis L. D., Michael N. L., Nara P. L., Birx D. L. Differential role of V3-specific antibodies in neutralization assays involving primary and laboratory-adapted isolates of HIV type 1. AIDS Res Hum Retroviruses. 1995 Nov;11(11):1379–1391. doi: 10.1089/aid.1995.11.1379. [DOI] [PubMed] [Google Scholar]
  64. Wrin T., Nunberg J. H. HIV-1MN recombinant gp120 vaccine serum, which fails to neutralize primary isolates of HIV-1, does not antagonize neutralization by antibodies from infected individuals. AIDS. 1994 Nov;8(11):1622–1623. doi: 10.1097/00002030-199411000-00017. [DOI] [PubMed] [Google Scholar]
  65. di Marzo Veronese F., Rahman R., Pal R., Boyer C., Romano J., Kalyanaraman V. S., Nair B. C., Gallo R. C., Sarngadharan M. G. Delineation of immunoreactive, conserved regions in the external glycoprotein of the human immunodeficiency virus type 1. AIDS Res Hum Retroviruses. 1992 Jun;8(6):1125–1132. doi: 10.1089/aid.1992.8.1125. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES