Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Jun;71(6):4395–4399. doi: 10.1128/jvi.71.6.4395-4399.1997

Analysis of LaCrosse virus S mRNA 5' termini in infected mosquito cells and Aedes triseriatus mosquitoes.

D K Dobie 1, C D Blair 1, L J Chandler 1, A Rayms-Keller 1, M M McGaw 1, L P Wasieloski 1, B J Beaty 1
PMCID: PMC191657  PMID: 9151829

Abstract

Nucleotide sequences were determined for the 5' termini of La Crosse virus (LAC) S segment mRNA from persistently infected mosquito cell cultures (C6/36 from Aedes albopictus) and embryos (Aedes triseriatus). LAC primes transcription of its mRNA with "scavenged" 5' caps and adjacent oligonucleotides from host mRNAs, and these non-virus-encoded 5'-terminal extensions are heterogeneous in infected mammalian cells. The nature of mosquito host-derived primers has not been previously investigated. During early C6/36 cell infection, LAC mRNA 5'-terminal sequences were heterogeneous, but variability decreased as infection persisted. One predominant sequence, 5' CCACTCGCCACT (sequence 1), was observed throughout C6/36 cell infection but was more prevalent after 15 days postinfection. This LAC mRNA 5'-terminal sequence comprised 81% of the scavenged host oligonucleotides from vertically infected A. triseriatus eggs during embryogenesis. As these embryos progressed in the dormant overwintering stage (diapause), the predominant scavenged sequence became 5' AGGAAAAGATGGT (sequence 2), and sequence 1 became less prevalent. As the eggs emerged from diapause, the LAC mRNA 5' termini were more variable; 33% had sequence 1, and the remainder were heterogeneous. In post-diapausing eggs, 100% of viral mRNAs had sequence 1 at their 5' termini. Molecular analyses thus revealed continuous but selective LAC cap scavenging during persistent C6/36 cell infection and during embryogenesis and diapause in A. triseriatus eggs. The variety of host-derived sequences was limited in both biosynthetically active (embryonating) and dormant (diapausing) eggs.

Full Text

The Full Text of this article is available as a PDF (306.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaty B. J., Thompson W. H. Emergence of La Crosse virus from endemic foci. Fluorescent antibody studies of overwintered Aedes triseriatus. Am J Trop Med Hyg. 1975 Jul;24(4):685–691. doi: 10.4269/ajtmh.1975.24.685. [DOI] [PubMed] [Google Scholar]
  2. Bishop D. H., Gay M. E., Matsuoko Y. Nonviral heterogeneous sequences are present at the 5' ends of one species of snowshoe hare bunyavirus S complementary RNA. Nucleic Acids Res. 1983 Sep 24;11(18):6409–6418. doi: 10.1093/nar/11.18.6409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Black W. C., 4th, Piesman J. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10034–10038. doi: 10.1073/pnas.91.21.10034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bouloy M., Hannoun C. Studies on lumbo virus replication. I. RNA-dependent RNA polymerase associated with virions. Virology. 1976 Jan;69(1):258–264. doi: 10.1016/0042-6822(76)90212-9. [DOI] [PubMed] [Google Scholar]
  5. Bouloy M., Pardigon N., Vialat P., Gerbaud S., Girard M. Characterization of the 5' and 3' ends of viral messenger RNAs isolated from BHK21 cells infected with Germiston virus (Bunyavirus). Virology. 1990 Mar;175(1):50–58. doi: 10.1016/0042-6822(90)90185-t. [DOI] [PubMed] [Google Scholar]
  6. Cabradilla C. D., Jr, Holloway B. P., Obijeski J. F. Molecular cloning and sequencing of the La Crosse virus S RNA. Virology. 1983 Jul 30;128(2):463–468. doi: 10.1016/0042-6822(83)90271-4. [DOI] [PubMed] [Google Scholar]
  7. Calisher C. H. Medically important arboviruses of the United States and Canada. Clin Microbiol Rev. 1994 Jan;7(1):89–116. doi: 10.1128/cmr.7.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chandler L. J., Beaty B. J., Baldridge G. D., Bishop D. H., Hewlett M. J. Heterologous reassortment of bunyaviruses in Aedes triseriatus mosquitoes and transovarial and oral transmission of newly evolved genotypes. J Gen Virol. 1990 May;71(Pt 5):1045–1050. doi: 10.1099/0022-1317-71-5-1045. [DOI] [PubMed] [Google Scholar]
  9. Chandler L. J., Wasieloski L. P., Blair C. D., Beaty B. J. Analysis of La Crosse virus S-segment RNA and its positive-sense transcripts in persistently infected mosquito tissues. J Virol. 1996 Dec;70(12):8972–8976. doi: 10.1128/jvi.70.12.8972-8976.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  11. Collett M. S. Messenger RNA of the M segment RNA of Rift Valley fever virus. Virology. 1986 May;151(1):151–156. doi: 10.1016/0042-6822(86)90114-5. [DOI] [PubMed] [Google Scholar]
  12. Elliott R. M. Molecular biology of the Bunyaviridae. J Gen Virol. 1990 Mar;71(Pt 3):501–522. doi: 10.1099/0022-1317-71-3-501. [DOI] [PubMed] [Google Scholar]
  13. Endres M. J., Jacoby D. R., Janssen R. S., Gonzalez-Scarano F., Nathanson N. The large viral RNA segment of California serogroup bunyaviruses encodes the large viral protein. J Gen Virol. 1989 Jan;70(Pt 1):223–228. doi: 10.1099/0022-1317-70-1-223. [DOI] [PubMed] [Google Scholar]
  14. Eshita Y., Ericson B., Romanowski V., Bishop D. H. Analyses of the mRNA transcription processes of snowshoe hare bunyavirus S and M RNA species. J Virol. 1985 Sep;55(3):681–689. doi: 10.1128/jvi.55.3.681-689.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fuller F., Bishop D. H. Identification of virus-coded nonstructural polypeptides in bunyavirus-infected cells. J Virol. 1982 Feb;41(2):643–648. doi: 10.1128/jvi.41.2.643-648.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Garcin D., Lezzi M., Dobbs M., Elliott R. M., Schmaljohn C., Kang C. Y., Kolakofsky D. The 5' ends of Hantaan virus (Bunyaviridae) RNAs suggest a prime-and-realign mechanism for the initiation of RNA synthesis. J Virol. 1995 Sep;69(9):5754–5762. doi: 10.1128/jvi.69.9.5754-5762.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gentsch J. R., Bishop D. L. M viral RNA segment of bunyaviruses codes for two glycoproteins, G1 and G2. J Virol. 1979 Jun;30(3):767–770. doi: 10.1128/jvi.30.3.767-770.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hacker D., Raju R., Kolakofsky D. La Crosse virus nucleocapsid protein controls its own synthesis in mosquito cells by encapsidating its mRNA. J Virol. 1989 Dec;63(12):5166–5174. doi: 10.1128/jvi.63.12.5166-5174.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Igarashi A. Isolation of a Singh's Aedes albopictus cell clone sensitive to Dengue and Chikungunya viruses. J Gen Virol. 1978 Sep;40(3):531–544. doi: 10.1099/0022-1317-40-3-531. [DOI] [PubMed] [Google Scholar]
  20. Ihara T., Matsuura Y., Bishop D. H. Analyses of the mRNA transcription processes of Punta Toro phlebovirus (Bunyaviridae). Virology. 1985 Dec;147(2):317–325. doi: 10.1016/0042-6822(85)90134-5. [DOI] [PubMed] [Google Scholar]
  21. Jin H., Elliott R. M. Characterization of Bunyamwera virus S RNA that is transcribed and replicated by the L protein expressed from recombinant vaccinia virus. J Virol. 1993 Mar;67(3):1396–1404. doi: 10.1128/jvi.67.3.1396-1404.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kolakofsky D., Hacker D. Bunyavirus RNA synthesis: genome transcription and replication. Curr Top Microbiol Immunol. 1991;169:143–159. doi: 10.1007/978-3-642-76018-1_5. [DOI] [PubMed] [Google Scholar]
  23. Krug R. M. Priming of influenza viral RNA transcription by capped heterologous RNAs. Curr Top Microbiol Immunol. 1981;93:125–149. doi: 10.1007/978-3-642-68123-3_6. [DOI] [PubMed] [Google Scholar]
  24. Patterson J. L., Holloway B., Kolakofsky D. La Crosse virions contain a primer-stimulated RNA polymerase and a methylated cap-dependent endonuclease. J Virol. 1984 Oct;52(1):215–222. doi: 10.1128/jvi.52.1.215-222.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Patterson J. L., Kolakofsky D. Characterization of La Crosse virus small-genome transcripts. J Virol. 1984 Mar;49(3):680–685. doi: 10.1128/jvi.49.3.680-685.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rossier C., Raju R., Kolakofsky D. LaCrosse virus gene expression in mammalian and mosquito cells. Virology. 1988 Aug;165(2):539–548. doi: 10.1016/0042-6822(88)90598-3. [DOI] [PubMed] [Google Scholar]
  27. THOMPSON W. H., KALFAYAN B., ANSLOW R. O. ISOLATION OF CALIFORNIA ENCEPHALITIS GROUP VIRUS FROM A FATAL HUMAN ILLNESS. Am J Epidemiol. 1965 Mar;81:245–253. doi: 10.1093/oxfordjournals.aje.a120512. [DOI] [PubMed] [Google Scholar]
  28. Wasieloski L. P., Jr, Rayms-Keller A., Curtis L. A., Blair C. D., Beaty B. J. Reverse transcription-PCR detection of LaCrosse virus in mosquitoes and comparison with enzyme immunoassay and virus isolation. J Clin Microbiol. 1994 Sep;32(9):2076–2080. doi: 10.1128/jcm.32.9.2076-2080.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wattam A. R., Christensen B. M. Variation in Aedes aegypti mRNA populations related to strain, sex, and development. Am J Trop Med Hyg. 1992 Nov;47(5):702–707. doi: 10.4269/ajtmh.1992.47.702. [DOI] [PubMed] [Google Scholar]
  30. van Poelwijk F., Kolkman J., Goldbach R. Sequence analysis of the 5' ends of tomato spotted wilt virus N mRNAs. Arch Virol. 1996;141(1):177–184. doi: 10.1007/BF01718599. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES