Abstract
The selective monoamine oxidase (MAO) inhibitors clorgyline, selegiline and AGN 1135 did not cause a change in responses of the cat nictitating membrane to preganglionic sympathetic nerve stimulation at 5 Hz. Both selective MAO-A and MAO-B inhibitors markedly potentiated nictitating membrane contractions in response to beta-phenylethylamine (PEA). However, the responses to tyramine were unchanged. The pressor responses to tyramine were potentiated by the selective MAO-A inhibitor clorgyline (2 mg kg-1) but not by selegiline (1.0 mg kg-1) and AGN 1135 (1.5 mg kg-1), selective MAO-B inhibitors. At the doses used selegiline and AGN 1135 caused a near total selective inhibition of liver and brain MAO-B, while clorgyline inhibited MAO-A only in the brain. AGN 1135, like selegiline, could be a useful drug in potentiating the action of L-DOPA in Parkinson's disease.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birkmayer W., Riederer P., Ambrozi L., Youdim M. B. Implications of combined treatment with 'Madopar' and L-deprenil in Parkinson's disease. A long-term study. Lancet. 1977 Feb 26;1(8009):439–443. doi: 10.1016/s0140-6736(77)91940-7. [DOI] [PubMed] [Google Scholar]
- Coquil J. F., Goridis C., Mack G., Neff N. H. Monoamine oxidase in rat arteries: evidence for different forms and selective localization. Br J Pharmacol. 1973 Aug;48(4):590–599. doi: 10.1111/j.1476-5381.1973.tb08245.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elsworth J. D., Glover V., Reynolds G. P., Sandler M., Lees A. J., Phuapradit P., Shaw K. M., Stern G. M., Kumar P. Deprenyl administration in man: a selective monoamine oxidase B inhibitor without the 'cheese effect'. Psychopharmacology (Berl) 1978 Apr 14;57(1):33–38. doi: 10.1007/BF00426954. [DOI] [PubMed] [Google Scholar]
- Finberg J. P., Tenne M., Youdim M. B. Tyramine antagonistic properties of AGN 1135, an irreversible inhibitor of monoamine oxidase type B. Br J Pharmacol. 1981 May;73(1):65–74. doi: 10.1111/j.1476-5381.1981.tb16772.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fowler C. J., Tipton K. F. Concentration dependence of the oxidation of tyramine by the two forms of rat liver mitochondrial monoamine oxidase. Biochem Pharmacol. 1981 Dec 15;30(24):3329–3332. doi: 10.1016/0006-2952(81)90607-9. [DOI] [PubMed] [Google Scholar]
- Fowler C. J., Tipton K. F. Deamination of 5-hydroxytryptamine by both forms of monoamine oxidase in the rat brain. J Neurochem. 1982 Mar;38(3):733–736. doi: 10.1111/j.1471-4159.1982.tb08692.x. [DOI] [PubMed] [Google Scholar]
- Garcha G., Imrie P. R., Marley E., Thomas D. V. Effects of monoamine oxidase inhibitor (MAOI) pretreatment on the fate of intraduodenally instilled [14C]-tyramine [proceedings]. Br J Pharmacol. 1979 Nov;67(3):454P–455P. [PMC free article] [PubMed] [Google Scholar]
- Glover V., Pycock C. J., Sandler M. Tyramine-induced noradrenaline release from rat brain slices: prevention by (-)-deprenyl. Br J Pharmacol. 1983 Sep;80(1):141–148. doi: 10.1111/j.1476-5381.1983.tb11059.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green A. R., Youdim M. B. Effects of monoamine oxidase inhibition by clorgyline, deprenil or tranylcypromine on 5-hydroxytryptamine concentrations in rat brain and hyperactivity following subsequent tryptophan administration. Br J Pharmacol. 1975 Nov;55(3):415–422. doi: 10.1111/j.1476-5381.1975.tb06946.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jarrott B. Occurrence and properties of monoamine oxidase in adrenergic neurons. J Neurochem. 1971 Jan;18(1):7–16. doi: 10.1111/j.1471-4159.1971.tb00162.x. [DOI] [PubMed] [Google Scholar]
- Kalir A., Sabbagh A., Youdim M. B. Selective acetylenic 'suicide' and reversible inhibitors of monoamine oxidase types A and B. Br J Pharmacol. 1981 May;73(1):55–64. doi: 10.1111/j.1476-5381.1981.tb16771.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knoll J., Magyar K. Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol. 1972;5:393–408. [PubMed] [Google Scholar]
- Knoll J. The possible mechanisms of action of (-)deprenyl in Parkinson's disease. J Neural Transm. 1978;43(3-4):177–198. doi: 10.1007/BF01246955. [DOI] [PubMed] [Google Scholar]
- Lader M. H., Sakalis G., Tansella M. Interactions between sympathomimetic amines and a new monoamine oxidase inhibitor. Psychopharmacologia. 1970 Aug 19;18(1):118–123. doi: 10.1007/BF00402391. [DOI] [PubMed] [Google Scholar]
- Richardson J. B., Dixon M. Varicose veins in tropical Africa. Lancet. 1977 Apr 9;1(8015):791–792. doi: 10.1016/s0140-6736(77)92971-3. [DOI] [PubMed] [Google Scholar]
- Sandler M., Glover V., Ashford A., Stern G. M. Absence of "cheese effect" during deprenyl therapy: some recent studies. J Neural Transm. 1978;43(3-4):209–215. doi: 10.1007/BF01246957. [DOI] [PubMed] [Google Scholar]
- Simpson L. L. Evidence that deprenyl, A type B monoamine oxidase inhibitor, is an indirectly acting sympathomimetic amine. Biochem Pharmacol. 1978;27(11):1591–1595. doi: 10.1016/0006-2952(78)90490-2. [DOI] [PubMed] [Google Scholar]
- Squires R. F. Multiple forms of monoamine oxidase in intact mitochondria as characterized by selective inhibitors and thermal stability: a comparison of eight mammalian species. Adv Biochem Psychopharmacol. 1972;5:355–370. [PubMed] [Google Scholar]
- Youdim M. B. In vivo, noradrenaline is a substrate for rat brain monoamine oxidase A and B. Br J Pharmacol. 1983 Jun;79(2):477–480. doi: 10.1111/j.1476-5381.1983.tb11021.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
