Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1985 Dec;86(4):777–787. doi: 10.1111/j.1476-5381.1985.tb11099.x

Actions of ATP and alpha, beta-methylene ATP on neuromuscular transmission and smooth muscle membrane of the rabbit and guinea-pig mesenteric arteries.

S Ishikawa
PMCID: PMC1916627  PMID: 3000499

Abstract

In the rabbit mesenteric artery, adenosine triphosphate (ATP), showed two actions on the membrane potential of muscle cells: low concentrations (1-10 microM) hyperpolarized and high concentrations (greater than or equal to 50 microM) depolarized the membrane. Both changes in the potential were accompanied by increases in ionic conductance. In the rabbit mesenteric artery, alpha, beta-methylene ATP (MeATP), (greater than or equal to 30 nM) depolarized the muscle membrane at a lower concentration than ATP (greater than or equal to 50 microM), and increased the ionic conductance of the membrane. The depolarization induced by ATP was prevented by low concentrations of MeATP, but the hyperpolarization was retained. Furthermore, the hyperpolarization was not affected by theophylline (10 microM). In the guinea-pig mesenteric artery, ATP and MeATP depolarized and increased the ionic conductance of muscle membrane, but to depolarize the membrane, higher concentrations of both agents were required, compared to those in the rabbit mesenteric artery. In the mesenteric arteries from both species, perivascular nerve stimulation evoked excitatory junction potentials (e.j.ps). In both tissues, MeATP inhibited the amplitude of e.j.ps at lower concentrations than did ATP, and both agents had more potent inhibitory actions on rabbit than on guinea-pig. The inhibition of e.j.p. induced by low concentrations of these agents showed no relationship to depolarization, but the inhibition induced by high concentrations was paralleled by depolarization and increase in ionic conductance of the membrane. In the rabbit mesenteric artery, overflow of noradrenaline (NA) and its metabolite (3,4-dihydroxyphenylglycol; DOPEG) produced by perivascular nerve stimulation was examined. ATP (0.1 mM) but not MeATP (0.1 microM) reduced the overflow of NA, whereas both agents had no effect on the overflow of DOPEG. Exogenously applied high concentrations of NA (greater than or equal to 3 microM) depolarized the muscle membrane in both species. These NA-induced depolarizations were not affected by treatment with ATP or MeATP. It is concluded that, in the rabbit mesenteric artery, ATP is more likely to be involved in generation of e.j.ps than is NA. A similar interpretation in the guinea-pig mesenteric artery is complicated by the depolarization produced by high concentrations of ATP or MeATP.

Full text

PDF
777

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe Y., Tomita T. Cable properties of smooth muscle. J Physiol. 1968 May;196(1):87–100. doi: 10.1113/jphysiol.1968.sp008496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bauer V., Kuriyama H. The nature of non-cholinergic, non-adrenergic transmission in longitudinal and circular muscles of the guinea-pig ileum. J Physiol. 1982 Nov;332:375–391. doi: 10.1113/jphysiol.1982.sp014419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burnstock G., Griffith S. G., Sneddon P. Autonomic nerves in the precapillary vessel wall. J Cardiovasc Pharmacol. 1984;6 (Suppl 2):S344–S353. doi: 10.1097/00005344-198406002-00009. [DOI] [PubMed] [Google Scholar]
  4. Burnstock G. Neural nomenclature. Nature. 1971 Jan 22;229(5282):282–283. doi: 10.1038/229282d0. [DOI] [PubMed] [Google Scholar]
  5. Cheung D. W. Two components in the cellular response of rat tail arteries to nerve stimulation. J Physiol. 1982 Jul;328:461–468. doi: 10.1113/jphysiol.1982.sp014277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Creed K. E., Ishikawa S., Ito Y. Electrical and mechanical activity recorded from rabbit urinary bladder in response to nerve stimulation. J Physiol. 1983 May;338:149–164. doi: 10.1113/jphysiol.1983.sp014666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hirst G. D., Neild T. O. Evidence for two populations of excitatory receptors for noradrenaline on arteriolar smooth muscle. Nature. 1980 Feb 21;283(5749):767–768. doi: 10.1038/283767a0. [DOI] [PubMed] [Google Scholar]
  8. Hirst G. D., Neild T. O. Localization of specialized noradrenaline receptors at neuromuscular junctions on arterioles of the guinea-pig. J Physiol. 1981;313:343–350. doi: 10.1113/jphysiol.1981.sp013669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hirst G. D., Neild T. O., Silverberg G. D. Noradrenaline receptors on the rat basilar artery. J Physiol. 1982 Jul;328:351–360. doi: 10.1113/jphysiol.1982.sp014268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ito Y., Takeda K. Non-adrenergic inhibitory nerves and putative transmitters in the smooth muscle of cat trachea. J Physiol. 1982 Sep;330:497–511. doi: 10.1113/jphysiol.1982.sp014355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Itoh T., Kitamura K., Kuriyama H. Roles of extrajunctional receptors in the response of guinea-pig mesenteric and rat tail arteries to adrenergic nerves. J Physiol. 1983 Dec;345:409–422. doi: 10.1113/jphysiol.1983.sp014985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Itoh T., Kuriyama H., Suzuki H. Excitation--contraction coupling in smooth muscle cells of the guinea-pig mesenteric artery. J Physiol. 1981 Dec;321:513–535. doi: 10.1113/jphysiol.1981.sp014000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Karashima T., Takata Y. The effects of ATP related compounds on the electrical activity of the rat portal vein. Gen Pharmacol. 1979;10(6):477–487. doi: 10.1016/0306-3623(79)90013-2. [DOI] [PubMed] [Google Scholar]
  14. Kuriyama H., Ito Y., Suzuki H., Kitamura K., Itoh T. Factors modifying contraction-relaxation cycle in vascular smooth muscles. Am J Physiol. 1982 Nov;243(5):H641–H662. doi: 10.1152/ajpheart.1982.243.5.H641. [DOI] [PubMed] [Google Scholar]
  15. Kuriyama H., Makita Y. The presynaptic regulation of noradrenaline release differs in mesenteric arteries of the rabbit and guinea-pig. J Physiol. 1984 Jun;351:379–396. doi: 10.1113/jphysiol.1984.sp015251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kuriyama H., Suyama A. Multiple actions of cocaine on neuromuscular transmission and smooth muscle cells of the guinea-pig mesenteric artery. J Physiol. 1983 Apr;337:631–654. doi: 10.1113/jphysiol.1983.sp014646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ninomiya J. G., Suzuki H. Electrical responses of smooth muscle cells of the mouse uterus to adenosine triphosphate. J Physiol. 1983 Sep;342:499–515. doi: 10.1113/jphysiol.1983.sp014865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Oishi R., Mishima S., Kuriyama H. Determination of norepinephrine and its metabolites released from rat vas deferens using high-performance liquid chromatography with electrochemical detection. Life Sci. 1983 Feb 28;32(9):933–940. doi: 10.1016/0024-3205(83)90922-0. [DOI] [PubMed] [Google Scholar]
  19. Sneddon P., Burnstock G. Inhibition of excitatory junction potentials in guinea-pig vas deferens by alpha, beta-methylene-ATP: further evidence for ATP and noradrenaline as cotransmitters. Eur J Pharmacol. 1984 Apr 13;100(1):85–90. doi: 10.1016/0014-2999(84)90318-2. [DOI] [PubMed] [Google Scholar]
  20. Su C. Purinergic inhibition of adrenergic transmission in rabbit blood vessels. J Pharmacol Exp Ther. 1978 Feb;204(2):351–361. [PubMed] [Google Scholar]
  21. Suzuki H. Electrical responses of smooth muscle cells of the rabbit ear artery to adenosine triphosphate. J Physiol. 1985 Feb;359:401–415. doi: 10.1113/jphysiol.1985.sp015592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Suzuki H., Fujiwara S. Neurogenic electrical responses of single smooth muscle cells of the dog middle cerebral artery. Circ Res. 1982 Dec;51(6):751–759. doi: 10.1161/01.res.51.6.751. [DOI] [PubMed] [Google Scholar]
  23. Takata Y., Kuriyama H. ATP-induced hyperpolarization of smooth muscle cells of the guinea-pig coronary artery. J Pharmacol Exp Ther. 1980 Mar;212(3):519–526. [PubMed] [Google Scholar]
  24. Tomita T., Watanabe H. A comparison of the effects of adenosine triphosphate with noradrenaline and with the inhibitory potential of the guinea-pig taenia coli. J Physiol. 1973 May;231(1):167–177. doi: 10.1113/jphysiol.1973.sp010226. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES