Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1985 Dec;86(4):817–826. doi: 10.1111/j.1476-5381.1985.tb11103.x

Effects of lidocaine, procaine, procainamide and quinidine on electrophysiological properties of cultured embryonic chick hearts.

F R Riccioppo Neto, N Sperelakis
PMCID: PMC1916628  PMID: 4075018

Abstract

The effects of lidocaine, procaine, procainamide and quinidine were studied on organ-cultured embryonic chick (2-3 day-old) ventricular cells. Lidocaine (10(-5) - 10(-4)M), in a dose-dependent manner, reduced the rate of pacemaker discharge, the action potential amplitude (APA), the maximum rate of rise (Vmax) of the upstroke of the action potential and the action potential duration at 50% repolarization (APD50). These changes occurred without alterations in the maximum diastolic potential (MDP). Extracellular electrical field stimulation could still evoke action potentials in cells arrested by 10(-4)M lidocaine, but 10(-3)M lidocaine completely abolished electrical activity. Procaine, procainamide and quinidine, at 5 X 10(-5)M to 10(-3)M, depolarized the cells to around -30 mV and reduced APA and Vmax. Procaine and procainamide increased APD50, but quinidine shortened it. All the effects described disappeared completely in about 40 min of superfusion with drug-free Tyrode solution. Isoprenaline (5 X 10(-7)M) and adrenaline (10(-6)M) restored spontaneous firing of preparations arrested by any of the antiarrhythmic agents and repolarized ventricular cells depolarized by procaine, procainamide or quinidine. Propranolol (5 X 10(-7)M) did not affect the depolarization produced by procaine (5 X 10(-4)M), but antagonized its reversal by isoprenaline. In contrast, isoprenaline (10(-6)M) did not produce recovery of automaticity of preparations arrested by verapamil (10(-5)M). Histamine (10(-5)M) or strontium (10 mM) were not able to restore rhythmic activity in cells arrested procaine. Application of long (10-15 s duration) hyperpolarizing currents did not reverse the blocking effect of procaine, procainamide and quinidine. The input resistance increased during the procaine-induced depolarization. It is suggested that the four agents studied block the slow Na+ channels responsible for the upstroke of the action potential in young chick heart cells. A drug-induced decrease in PK may occur in those cells arrested at low levels of membrane potential.

Full text

PDF
817

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander R. W., Galper J. B., Neer E. J., Smith T. W. Non-co-ordinate development of beta-adrenergic receptors and adenylate cyclase in chick heart. Biochem J. 1982 Jun 15;204(3):825–830. doi: 10.1042/bj2040825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnsdorf M. F., Bigger J. T., Jr The effect of procaine amide on components of excitability in long mammalian cardiac Purkinje fibers. Circ Res. 1976 Feb;38(2):115–122. doi: 10.1161/01.res.38.2.115. [DOI] [PubMed] [Google Scholar]
  3. Arnsdorf M. F., Bigger J. T. The effect of lidocaine on components of excitability in long mammalian cardiac Purkinje fibers. J Pharmacol Exp Ther. 1975 Nov;195(2):206–215. [PubMed] [Google Scholar]
  4. Bigger J. T., Jr, Mandel W. J. Effect of lidocaine on the electrophysiological properties of ventricular muscle and purkinje fibers. J Clin Invest. 1970 Jan;49(1):63–77. doi: 10.1172/JCI106224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brennan F. J., Cranefield P. F., Wit A. L. Effects of lidocaine and on slow response and depressed fast response action potentials of canine cardiac Purkinje fibers. J Pharmacol Exp Ther. 1978 Feb;204(2):312–324. [PubMed] [Google Scholar]
  6. Carmeliet E., Saikawa T. Shortening of the action potential and reduction of pacemaker activity by lidocaine, quinidine, and procainamide in sheep cardiac purkinje fibers. An effect on Na or K currents? Circ Res. 1982 Feb;50(2):257–272. doi: 10.1161/01.res.50.2.257. [DOI] [PubMed] [Google Scholar]
  7. Carmeliet E. Selectivity of antiarrhythmic drugs and ionic channels: a historical overview. Ann N Y Acad Sci. 1984;427:1–15. doi: 10.1111/j.1749-6632.1984.tb20771.x. [DOI] [PubMed] [Google Scholar]
  8. Carmeliet E., Verdonck F. Effects of aprindine and lidocaine on transmembrane potentials and radioactive K efflux in different cardiac tissues. Acta Cardiol. 1974;Suppl 18:73–90. [PubMed] [Google Scholar]
  9. Colatsky T. J. Mechanisms of action of lidocaine and quinidine on action potential duration in rabbit cardiac Purkinje fibers. An effect on steady state sodium currents? Circ Res. 1982 Jan;50(1):17–27. doi: 10.1161/01.res.50.1.17. [DOI] [PubMed] [Google Scholar]
  10. Ducouret P. The effect of quinidine on membrane electrical activity in frog auricular fibres studied by current and voltage clamp. Br J Pharmacol. 1976 Jun;57(2):163–184. doi: 10.1111/j.1476-5381.1976.tb07465.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gadsby D. C. Beta-adrenoceptor agonists increase membrane K+ conductance in cardiac Purkinje fibres. Nature. 1983 Dec 15;306(5944):691–693. doi: 10.1038/306691a0. [DOI] [PubMed] [Google Scholar]
  12. Hashimoto K., Satoh H., Imai S. Effects of etafenone and antiarrhythmic drugs on Na and Ca channels of guinea pig atrial muscle. J Cardiovasc Pharmacol. 1979 Sep-Oct;1(5):561–570. doi: 10.1097/00005344-197909000-00008. [DOI] [PubMed] [Google Scholar]
  13. Hauswirth O., Singh B. N. Ionic mechanisms in heart muscle in relation to the genesis and the pharmacological control of cardiac arrhythmias. Pharmacol Rev. 1978 Mar;30(1):5–63. [PubMed] [Google Scholar]
  14. Josephson I., Sperelakis N. Local anesthetic blockade of Ca2+ -mediated action potentials in cardiac muscle. Eur J Pharmacol. 1976 Dec;40(2):201–208. doi: 10.1016/0014-2999(76)90053-4. [DOI] [PubMed] [Google Scholar]
  15. Kohlhardt M., Bauer B., Krause H., Fleckenstein A. Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibres by the use of specific inhibitors. Pflugers Arch. 1972;335(4):309–322. doi: 10.1007/BF00586221. [DOI] [PubMed] [Google Scholar]
  16. Kojima M., Sperelakis N. Calcium antagonistic drugs differ in ability to block the slow Na+ channels of young embryonic chick hearts. Eur J Pharmacol. 1983 Oct 14;94(1-2):9–18. doi: 10.1016/0014-2999(83)90436-3. [DOI] [PubMed] [Google Scholar]
  17. Lamanna V., Antzelevitch C., Moe G. K. Effects of lidocaine on conduction through depolarized canine false tendons and on a model of reflected reentry. J Pharmacol Exp Ther. 1982 May;221(2):353–361. [PubMed] [Google Scholar]
  18. McLean M. J., Shigenobu K., Sperelakis N. Two pharmacological types of cardiac slow Na+ channels as distinguished by verapamil. Eur J Pharmacol. 1974 May;26(2):379–382. doi: 10.1016/0014-2999(74)90250-7. [DOI] [PubMed] [Google Scholar]
  19. Nawrath H. Action potential, membrane currents and force of contraction in mammalian heart muscle fibers treated with quinidine. J Pharmacol Exp Ther. 1981 Jan;216(1):176–182. [PubMed] [Google Scholar]
  20. Polson J. B., Goldberg N. D., Shideman F. E. Norepinephrine- and isoproterenol- induced changes in cardiac contractility and cyclic adenosine 3':5' -monophosphate levels during early development of the embryonic chick. J Pharmacol Exp Ther. 1977 Mar;200(3):630–637. [PubMed] [Google Scholar]
  21. Renaud J. F., Sperelakis N., Le Douarin G. Increase of cyclic AMP levels induced by isoproterenol in cultured and non-cultured chick embryonic hearts. J Mol Cell Cardiol. 1978 Mar;10(3):281–286. doi: 10.1016/0022-2828(78)90350-4. [DOI] [PubMed] [Google Scholar]
  22. Rosen M. R., Gelband H., Hoffman B. F. Effects of blood perfusion on electrophysiological properties of isolated canine Purkinje fibers. Circ Res. 1972 May;30(5):575–587. doi: 10.1161/01.res.30.5.575. [DOI] [PubMed] [Google Scholar]
  23. Rosen M. R., Merker C., Gelband H., Hoffman B. F. Effects of procaine amide on the electrophysiologic properties of the canine ventricular conducting system. J Pharmacol Exp Ther. 1973 Jun;185(3):438–446. [PubMed] [Google Scholar]
  24. Satoh H. Comparison of the chronotropic responses to local anesthetics (procaine, lidocaine, prilocaine, mepivacaine and bupivacaine) of the canine sinus node in situ. Jpn J Pharmacol. 1981 Feb;31(1):85–93. doi: 10.1254/jjp.31.85. [DOI] [PubMed] [Google Scholar]
  25. Satoh H., Hashimoto K. Effect of lidocaine on membrane currents in rabbit sino-atrial node cells. Arch Int Pharmacodyn Ther. 1984 Aug;270(2):241–254. [PubMed] [Google Scholar]
  26. Senami M., Irisawa H. Effect of procaine amide on the membrane currents of the sino-atrial node cells of rabbits. Jpn J Physiol. 1981;31(2):225–236. doi: 10.2170/jjphysiol.31.225. [DOI] [PubMed] [Google Scholar]
  27. Shigenobu K., Schneider J. A., Sperelakis N. Verapamil blockade of slow Na+ and Ca++ responses in myocardial cells. J Pharmacol Exp Ther. 1974 Aug;190(2):280–288. [PubMed] [Google Scholar]
  28. Singer D. H., Baumgarten C. M., Ten Eick R. E. Cellular electrophysiology of ventricular and other dysrhythmias: studies on diseased and ischemic heart. Prog Cardiovasc Dis. 1981 Sep-Oct;24(2):97–156. doi: 10.1016/0033-0620(81)90002-5. [DOI] [PubMed] [Google Scholar]
  29. Sperelakis N., Lehmkuhl D. Ba 2+ AND Sr 2+ reversal of the inhibition produced by ouabain and local anesthetics on membrane potentials of cultured heart cells. Exp Cell Res. 1968 Feb;49(2):396–410. doi: 10.1016/0014-4827(68)90189-4. [DOI] [PubMed] [Google Scholar]
  30. Sperelakis N., Lehmkuhl D. Insensitivity of cultured chick heart cells to autonomic agents and tetrodotoxin. Am J Physiol. 1965 Oct;209(4):693–698. doi: 10.1152/ajplegacy.1965.209.4.693. [DOI] [PubMed] [Google Scholar]
  31. Sperelakis N., Pappano A. J. Physiology and pharmacology of developing heart cells. Pharmacol Ther. 1983;22(1):1–39. doi: 10.1016/0163-7258(83)90050-5. [DOI] [PubMed] [Google Scholar]
  32. Sperelakis N., Shigenobu K. Changes in membrane properties of chick embryonic hearts during development. J Gen Physiol. 1972 Oct;60(4):430–453. doi: 10.1085/jgp.60.4.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sperelakis N., Shigenobu K. Organ-cultured chick embryonic hearts of various ages. I. Electrophysiology. J Mol Cell Cardiol. 1974 Oct;6(5):449–471. doi: 10.1016/0022-2828(74)90027-3. [DOI] [PubMed] [Google Scholar]
  34. WEIDMANN S. Effects of calcium ions and local anesthetics on electrical properties of Purkinje fibres. J Physiol. 1955 Sep 28;129(3):568–582. doi: 10.1113/jphysiol.1955.sp005379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weld F. M., Bigger J. T., Jr The effect of lidocaine on diastolic transmembrane currents determining pacemaker depolarization in cardiac Purkinje fibers. Circ Res. 1976 Mar;38(3):203–208. doi: 10.1161/01.res.38.3.203. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES