Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1985 Aug;85(4):775–781. doi: 10.1111/j.1476-5381.1985.tb11075.x

Prostaglandin release mediates drug-induced stimulation of sodium transport in frog skin: the effects of quinacrine.

D Erlij, L Gersten
PMCID: PMC1916656  PMID: 3876129

Abstract

Quinacrine markedly increased the release of prostaglandin E2 (PGE2) into the basolateral solution of the bullfrog skin from a control value of 32.7 +/- 21.7 pg per 20 min period to a stimulated value of 8593.1 +/- 4112.3 pg per 20 min period. Quinacrine increased the amiloride-sensitive short circuit current from 20.7 +/- 2.1 microA cm-2 to 45.4 +/- 6.5 microA cm-2. The stimulatory effects of quinacrine on both short circuit current and prostaglandin release were blocked in skins pretreated with indomethacin (10(-6) M). Quinacrine did not block either the stimulation of the short circuit current or the increase in PGE2 release caused by the calcium ionophore, ionomycin. These results suggest: (a) the release of PGE2 and the stimulation of the short circuit current caused by quinacrine are linked since blocking PGE2 release inhibits the stimulation of the short circuit current; (b) given the complexity of its actions, quinacrine is a poor tool to examine whether the effects of a given agent are mediated through the activation of endogenous phospholipases. In addition our results taken together with other findings in the literature suggest that there is a diverse group of compounds that stimulate transepithelial sodium transport by releasing PGE2.

Full text

PDF
775

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aceves J., Erlij D. Sodium transport across the isolated epithelium of the frog skin. J Physiol. 1971 Jan;212(1):195–210. doi: 10.1113/jphysiol.1971.sp009317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balaban R. S., Mandel L. J. Comparison of the effects of increased intracellular calcium and antidiuretic hormone on active sodium transport in frog skin. A study with the calcium ionophore A23187. Biochim Biophys Acta. 1979 Jul 19;555(1):1–12. doi: 10.1016/0005-2736(79)90067-1. [DOI] [PubMed] [Google Scholar]
  3. Cuthbert A. W., Wilson S. A. Mechanisms for the effects of acetylcholine on sodium transport in frog skin. J Membr Biol. 1981 Mar 15;59(1):65–75. doi: 10.1007/BF01870822. [DOI] [PubMed] [Google Scholar]
  4. Dise C. A., Burch J. W., Goodman D. B. Direct interaction of mepacrine with erythrocyte and platelet membrane phospholipid. J Biol Chem. 1982 May 10;257(9):4701–4704. [PubMed] [Google Scholar]
  5. Dray F., Charbonnel B., Maclouf J. Radioimmunoassay of prostaglandins Falpha, E1 and E2 in human plasma. Eur J Clin Invest. 1975 Jul 29;5(4):311–318. doi: 10.1111/j.1365-2362.1975.tb00459.x. [DOI] [PubMed] [Google Scholar]
  6. Els W. J., Helman S. I. Vasopressin, theophylline, PGE2, and indomethacin on active Na transport in frog skin: studies with microelectrodes. Am J Physiol. 1981 Sep;241(3):F279–F288. doi: 10.1152/ajprenal.1981.241.3.F279. [DOI] [PubMed] [Google Scholar]
  7. Erlij D. Basic electrical properties of tight epithelia determined with a simple method. Pflugers Arch. 1976 Jun 29;364(1):91–93. doi: 10.1007/BF01062917. [DOI] [PubMed] [Google Scholar]
  8. Fassina G., Carpenedo F., Santi R. Effect of prostaglandin E1 on isolated short-circuited frog skin. Life Sci. 1969 Feb 1;8(3):181–187. doi: 10.1016/0024-3205(69)90092-7. [DOI] [PubMed] [Google Scholar]
  9. Flower R. Steroidal antiinflammatory drugs as inhibitors of phospholipase A2. Adv Prostaglandin Thromboxane Res. 1978;3:105–112. [PubMed] [Google Scholar]
  10. Folkert V. W., Schlondorff D. Relationship between prostaglandin synthesis and phospholipid turnover in rat glomeruli: effect of trifluoperazine, A23187, and mepacrine. Adv Prostaglandin Thromboxane Leukot Res. 1983;11:513–516. [PubMed] [Google Scholar]
  11. Forrest J. N., Jr, Schneider C. J., Goodman D. B. Role of prostaglandin E2 in mediating the effects of pH on the hydroosmotic response to vasopressin in the toad urinary bladder. J Clin Invest. 1982 Mar;69(3):499–506. doi: 10.1172/JCI110475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gerencser G. A. Effect of prostaglandin E1 on transmural potential difference and short-circuit current in isolated frog (Rana catesbeiana) skin. Comp Biochem Physiol C. 1978;60(2):199–203. doi: 10.1016/0306-4492(78)90094-1. [DOI] [PubMed] [Google Scholar]
  13. Hofmann S. L., Prescott S. M., Majerus P. W. The effects of mepacrine and p-bromophenacyl bromide on arachidonic acid release in human platelets. Arch Biochem Biophys. 1982 Apr 15;215(1):237–244. doi: 10.1016/0003-9861(82)90300-9. [DOI] [PubMed] [Google Scholar]
  14. Lote C. J., Rider J. B., Thomas S. The effect of prostaglandin E1 on the short-circuit current and sodium, potassium, chloride and calcium movements across isolated frog (Rana temporaria) skin. Pflugers Arch. 1974;352(2):145–153. doi: 10.1007/BF00587513. [DOI] [PubMed] [Google Scholar]
  15. Nielsen R. Effect of the polyene antibiotic filipin and the calcium ionophore A23187 on sodium transport in isolated frog skin (Rana temporaria). J Membr Biol. 1978;40(Spec No):331–345. doi: 10.1007/BF02026015. [DOI] [PubMed] [Google Scholar]
  16. Oelz O., Knapp H. R., Roberts L. J., Oelz R., Sweetman B. J., Oates J. A., Reed P. W. Calcium-dependent stimulation of thromboxane and prostaglandin biosynthesis by ionophores. Adv Prostaglandin Thromboxane Res. 1978;3:147–158. [PubMed] [Google Scholar]
  17. Pickett W. C., Jesse R. L., Cohen P. Initiation of phospholipase A2 activity in human platelets by the calcium ion ionophore A23187. Biochim Biophys Acta. 1976 Jan 18;486(1):209–213. doi: 10.1016/0005-2760(77)90086-8. [DOI] [PubMed] [Google Scholar]
  18. Zusman R. M., Keiser H. R., Handler J. S. Vasopressin-stimulated prostaglandin E biosynthesis in the toad urinary bladder. Effect of water flow. J Clin Invest. 1977 Dec;60(6):1339–1347. doi: 10.1172/JCI108893. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES