Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1986 Jun;88(2):315–322. doi: 10.1111/j.1476-5381.1986.tb10207.x

Opioids increase potassium conductance in submucous neurones of guinea-pig caecum by activating delta-receptors.

S Mihara, R A North
PMCID: PMC1916838  PMID: 2873857

Abstract

Intracellular records were made from neurones in the submucous plexus of the guinea-pig caecum. [Met5]enkephalin, [Leu5]enkephalin, [D-Ala2,D-Leu5]enkephalin (DADLE) and [D-Ser2,Leu5]enkephalin-Thr (DSLET) hyperpolarized the membrane when applied in concentrations of 30 nm-10 microM. Normorphine, [D-Ala2, MePhe4,Gly5]enkephalin-ol (DAGO), [D-Ala2,MePhe4,Met(0)5]enkephalin-ol (FK33824), dynorphin A and tifluadom had no effect at concentrations up to 10 microM. The hyperpolarization resulted from an increase in the membrane potassium conductance. Hyperpolarizations induced by [Met5]enkephalin were antagonized competitively by naloxone and by N-bisallyl[aminoisobutyrate2,3, Leu5]enkephalin (ICI 174864). The Schild plots for these antagonisms had slopes not different from one, and the dissociation equilibrium constants among individual neurones were 5-50 nM for naloxone and 5-60 nM for ICI 174864. The results indicate that the opioid receptors on guinea-pig submucous neurones which are coupled to potassium channels are of the delta-type.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARUNLAKSHANA O., SCHILD H. O. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959 Mar;14(1):48–58. doi: 10.1111/j.1476-5381.1959.tb00928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akil H., Watson S. J., Young E., Lewis M. E., Khachaturian H., Walker J. M. Endogenous opioids: biology and function. Annu Rev Neurosci. 1984;7:223–255. doi: 10.1146/annurev.ne.07.030184.001255. [DOI] [PubMed] [Google Scholar]
  3. Binder H. J., Laurenson J. P., Dobbins J. W. Role of opiate receptors in regulation of enkephalin stimulation of active sodium and chloride absorption. Am J Physiol. 1984 Oct;247(4 Pt 1):G432–G436. doi: 10.1152/ajpgi.1984.247.4.G432. [DOI] [PubMed] [Google Scholar]
  4. Cherubini E., North R. A. Mu and kappa opioids inhibit transmitter release by different mechanisms. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1860–1863. doi: 10.1073/pnas.82.6.1860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cotton R., Giles M. G., Miller L., Shaw J. S., Timms D. ICI 174864: a highly selective antagonist for the opioid delta-receptor. Eur J Pharmacol. 1984 Jan 27;97(3-4):331–332. doi: 10.1016/0014-2999(84)90470-9. [DOI] [PubMed] [Google Scholar]
  6. Duggan A. W., North R. A. Electrophysiology of opioids. Pharmacol Rev. 1983 Dec;35(4):219–281. [PubMed] [Google Scholar]
  7. Kachur J. F., Miller R. J., Field M. Control of guinea pig intestinal electrolyte secretion by a delta-opiate receptor. Proc Natl Acad Sci U S A. 1980 May;77(5):2753–2756. doi: 10.1073/pnas.77.5.2753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lord J. A., Waterfield A. A., Hughes J., Kosterlitz H. W. Endogenous opioid peptides: multiple agonists and receptors. Nature. 1977 Jun 9;267(5611):495–499. doi: 10.1038/267495a0. [DOI] [PubMed] [Google Scholar]
  9. North R. A., Surprenant A. Inhibitory synaptic potentials resulting from alpha 2-adrenoceptor activation in guinea-pig submucous plexus neurones. J Physiol. 1985 Jan;358:17–33. doi: 10.1113/jphysiol.1985.sp015537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. North R. A., Williams J. T. On the potassium conductance increased by opioids in rat locus coeruleus neurones. J Physiol. 1985 Jul;364:265–280. doi: 10.1113/jphysiol.1985.sp015743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Paterson S. J., Robson L. E., Kosterlitz H. W. Classification of opioid receptors. Br Med Bull. 1983 Jan;39(1):31–36. doi: 10.1093/oxfordjournals.bmb.a071787. [DOI] [PubMed] [Google Scholar]
  12. Surprenant A., North R. A. mu-Opioid receptors and alpha 2-adrenoceptors coexist on myenteric but not on submucous neurones. Neuroscience. 1985 Oct;16(2):425–430. doi: 10.1016/0306-4522(85)90014-4. [DOI] [PubMed] [Google Scholar]
  13. Ward S. J., Portoghese P. S., Takemori A. E. Pharmacological profiles of beta-funaltrexamine (beta-FNA) and beta-chlornaltrexamine (beta-CNA) on the mouse vas deferens preparation. Eur J Pharmacol. 1982 Jun 4;80(4):377–384. doi: 10.1016/0014-2999(82)90083-8. [DOI] [PubMed] [Google Scholar]
  14. Werz M. A., MacDonald R. L. Opioid peptides selective for mu- and delta-opiate receptors reduce calcium-dependent action potential duration by increasing potassium conductance. Neurosci Lett. 1983 Dec 2;42(2):173–178. doi: 10.1016/0304-3940(83)90402-0. [DOI] [PubMed] [Google Scholar]
  15. Werz M. A., Macdonald R. L. Dynorphin reduces calcium-dependent action potential duration by decreasing voltage-dependent calcium conductance. Neurosci Lett. 1984 May 4;46(2):185–190. doi: 10.1016/0304-3940(84)90439-7. [DOI] [PubMed] [Google Scholar]
  16. Werz M. A., Macdonald R. L. Dynorphin reduces voltage-dependent calcium conductance of mouse dorsal root ganglion neurons. Neuropeptides. 1984 Dec;5(1-3):253–256. doi: 10.1016/0143-4179(84)90075-1. [DOI] [PubMed] [Google Scholar]
  17. Werz M. A., Macdonald R. L. Opioid peptides with differential affinity for mu and delta receptors decrease sensory neuron calcium-dependent action potentials. J Pharmacol Exp Ther. 1983 Nov;227(2):394–402. [PubMed] [Google Scholar]
  18. Williams J. T., North R. A. Opiate-receptor interactions on single locus coeruleus neurones. Mol Pharmacol. 1984 Nov;26(3):489–497. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES