Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1985 Sep;86(1):247–257. doi: 10.1111/j.1476-5381.1985.tb09456.x

Changes in the mechanical properties of the longitudinal and circular muscle tissues of the rat myometrium during gestation.

H Izumi
PMCID: PMC1916855  PMID: 4052727

Abstract

Changes in the mechanical properties of the longitudinal and circular muscle tissues of the rat myometrium during gestation were investigated. In isolated longitudinal and circular muscles of the rat myometrium, spontaneous contractions and contractions per unit cross-sectional area induced by 128 mM K+ and 1 X 10(-5) M acetylcholine (ACh) increased with the progress of gestation. These increases appeared in longitudinal muscles to a greater extent than in circular muscles. ACh induced the largest contraction for both intact muscle tissues, at all stages of gestation. In both muscle layers, the ACh-induced contraction reached the same amplitude as the 1 X 10(-5) M Ca-induced contraction of skinned muscles, except for the longitudinal muscle at the 22nd day of gestation. In Ca-free solution containing 2 mM EGTA, ACh produced contraction in both intact muscle tissues at all stages and the amplitude was increased during the progress of gestation, whereas the K-induced and spontaneous contractions ceased. In saponin-treated skinned muscles of both layers, the free Ca concentration required to produce contraction was lowered, the maximum amplitudes of the contraction were increased and the pCa-tension relationships shifted to the left during the progress of gestation. The results indicate that during the progress of gestation, Ca sensitivity of of the contractile proteins and mechanical responses to agonists increased and that the properties of the intracellular Ca store site were also altered in both muscle layers.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe Y. Effects of changing the ionic environment on passive and active membrane properties of pregnant rat uterus. J Physiol. 1971 Apr;214(1):173–190. doi: 10.1113/jphysiol.1971.sp009426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adelstein R. S., Eisenberg E. Regulation and kinetics of the actin-myosin-ATP interaction. Annu Rev Biochem. 1980;49:921–956. doi: 10.1146/annurev.bi.49.070180.004421. [DOI] [PubMed] [Google Scholar]
  3. Anderson G. F., Kawarabayashi T., Marshall J. M. Effect of indomethacin and aspirin on uterine activity in pregnant rats: comparison of circular and longitudinal muscle. Biol Reprod. 1981 Mar;24(2):359–372. doi: 10.1095/biolreprod24.2.359. [DOI] [PubMed] [Google Scholar]
  4. Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345–360. doi: 10.1042/bj2200345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CASTEELS R., KURIYAMA H. MEMBRANE POTENTIAL AND IONIC CONTENT IN PREGNANT AND NON-PREGNANT RAT MYOMETRIUM. J Physiol. 1965 Mar;177:263–287. doi: 10.1113/jphysiol.1965.sp007591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Devine C. E., Somlyo A. V., Somlyo A. P. Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J Cell Biol. 1972 Mar;52(3):690–718. doi: 10.1083/jcb.52.3.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. EDMAN K. A., SCHILD H. O. The need for calcium in the contractile responses induced by acetylcholine and potassium in the rat uterus. J Physiol. 1962 May;161:424–441. doi: 10.1113/jphysiol.1962.sp006897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ebashi S., Endo M. Calcium ion and muscle contraction. Prog Biophys Mol Biol. 1968;18:123–183. doi: 10.1016/0079-6107(68)90023-0. [DOI] [PubMed] [Google Scholar]
  9. Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
  10. Iino M. Tension responses of chemically skinned fibre bundles of the guinea-pig taenia caeci under varied ionic environments. J Physiol. 1981 Nov;320:449–467. doi: 10.1113/jphysiol.1981.sp013961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Itoh T., Kajiwara M., Kitamura K., Kuriyama H. Roles of stored calcium on the mechanical response evoked in smooth muscle cells of the porcine coronary artery. J Physiol. 1982 Jan;322:107–125. doi: 10.1113/jphysiol.1982.sp014026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Itoh T., Kuriyama H., Suzuki H. Differences and similarities in the noradrenaline- and caffeine-induced mechanical responses in the rabbit mesenteric artery. J Physiol. 1983 Apr;337:609–629. doi: 10.1113/jphysiol.1983.sp014645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Itoh T., Kuriyama H., Suzuki H. Excitation--contraction coupling in smooth muscle cells of the guinea-pig mesenteric artery. J Physiol. 1981 Dec;321:513–535. doi: 10.1113/jphysiol.1981.sp014000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kawarabayashi T., Osa T. Comparative investigations of alpha- and beta-effects on the longitudinal and circular muscles of the pregnant rat myometrium. Jpn J Physiol. 1976;26(4):403–416. doi: 10.2170/jjphysiol.26.403. [DOI] [PubMed] [Google Scholar]
  15. Kishikawa T. Alterations in the properties of the rat myometrium during gestation and post partum. Jpn J Physiol. 1981;31(4):515–536. doi: 10.2170/jjphysiol.31.515. [DOI] [PubMed] [Google Scholar]
  16. Kuriyama H., Ito Y., Suzuki H., Kitamura K., Itoh T. Factors modifying contraction-relaxation cycle in vascular smooth muscles. Am J Physiol. 1982 Nov;243(5):H641–H662. doi: 10.1152/ajpheart.1982.243.5.H641. [DOI] [PubMed] [Google Scholar]
  17. Kuriyama H., Suzuki H. Changes in electrical properties of rat myometrium during gestation and following hormonal treatments. J Physiol. 1976 Sep;260(2):315–333. doi: 10.1113/jphysiol.1976.sp011517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kuriyama H., Suzuki H. Effects of prostaglandin E2 and oxytocin on the electrical activity of hormone-treated and pregnant rat myometria. J Physiol. 1976 Sep;260(2):335–349. doi: 10.1113/jphysiol.1976.sp011518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lalanne C., Mironneau C., Mironneau J., Savineau J. P. Contractions of rat uterine smooth muscle induced by acetylcholine and angiotensin II in Ca2+-free medium. Br J Pharmacol. 1984 Feb;81(2):317–326. doi: 10.1111/j.1476-5381.1984.tb10081.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Matsui K., Higashi K., Fukunaga K., Miyazaki K., Maeyama M., Miyamoto E. Hormone treatments and pregnancy alter myosin light chain kinase and calmodulin levels in rabbit myometrium. J Endocrinol. 1983 Apr;97(1):11–19. doi: 10.1677/joe.0.0970011. [DOI] [PubMed] [Google Scholar]
  21. Michael C. A., Schofield B. M. The influence of the ovarian hormones on the actomyosin content and the development of tension in uterine muscle. J Endocrinol. 1969 Aug;44(4):501–511. doi: 10.1677/joe.0.0440501. [DOI] [PubMed] [Google Scholar]
  22. Osa T., Kawarabayashi T. Effect of ions and drugs on the plateau potential in the circular muscle of pregnant rat myometrium. Jpn J Physiol. 1977;27(1):111–121. doi: 10.2170/jjphysiol.27.111. [DOI] [PubMed] [Google Scholar]
  23. Osa T., Ogasawara T. Effects of magnesium on the membrane activity and contraction of the circular muscle of rat myometrium during late pregnancy. Jpn J Physiol. 1983;33(3):485–495. doi: 10.2170/jjphysiol.33.485. [DOI] [PubMed] [Google Scholar]
  24. Osa T., Ogasawara T., Kato S. Effects of magnesium, oxytocin, and prostaglandin F2 alpha on the generation and propagation of excitation in the longitudinal muscle of rat myometrium during late pregnancy. Jpn J Physiol. 1983;33(1):51–67. doi: 10.2170/jjphysiol.33.51. [DOI] [PubMed] [Google Scholar]
  25. Osa T., Ogasawara T., Kato S. Modification by magnesium and manganese ions of the effects of oxytocin on the electrical and mechanical activity of the longitudinal muscle of estrogen-treated rat uterus. Jpn J Physiol. 1981;31(3):317–329. doi: 10.2170/jjphysiol.31.317. [DOI] [PubMed] [Google Scholar]
  26. Osa T., Watanabe M. Effects of catecholamines on the circular muscle of rat myometria at term during pregnancy. Jpn J Physiol. 1978;28(5):647–658. doi: 10.2170/jjphysiol.28.647. [DOI] [PubMed] [Google Scholar]
  27. Rüegg J. C., Meisheri K., Pfitzer G., Zeugner C. Skinned coronary smooth muscle: calmodulin, calcium antagonists, and cAMP influence contractility. Basic Res Cardiol. 1983 Jul-Aug;78(4):462–471. doi: 10.1007/BF02070169. [DOI] [PubMed] [Google Scholar]
  28. Saida K. Intracellular Ca release in skinned smooth muscle. J Gen Physiol. 1982 Aug;80(2):191–202. doi: 10.1085/jgp.80.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Suematsu E., Hirata M., Hashimoto T., Kuriyama H. Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery. Biochem Biophys Res Commun. 1984 Apr 30;120(2):481–485. doi: 10.1016/0006-291x(84)91279-8. [DOI] [PubMed] [Google Scholar]
  30. Suematsu E., Hirata M., Kuriyama H. Effects of cAMP- and cGMP-dependent protein kinases, and calmodulin on Ca2+ uptake by highly purified sarcolemmal vesicles of vascular smooth muscle. Biochim Biophys Acta. 1984 Jun 13;773(1):83–90. doi: 10.1016/0005-2736(84)90552-2. [DOI] [PubMed] [Google Scholar]
  31. de Mattos C. E., Kempson R. L., Erdos T., Csapo A. Stretch-induced myometrial hypertrophy. Fertil Steril. 1967 Jul-Aug;18(4):545–556. doi: 10.1016/s0015-0282(16)36373-7. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES