Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1986 Jan;87(1):249–255. doi: 10.1111/j.1476-5381.1986.tb10178.x

Role of the endothelium on the facilitatory effects of angiotensin I and angiotensin II on noradrenergic transmission in the caudal artery of the rat.

D F Story, J Ziogas
PMCID: PMC1916900  PMID: 3006853

Abstract

Perfusion of carbogen gas through the lumen of the rat caudal artery abolished the dilator response to acetylcholine (1 mumol 1(-1) in artery segments which had been precontracted with noradrenaline (50 nmol 1(-1]. Hence, it was assumed that gas perfusion was effective in removing the vascular endothelium. Angiotensin I (30 nmol 1(-1] and angiotensin II (10 nmol 1(-1] enhanced the responses of artery segments to field stimulation of their sympathetic nerves (0.5 Hz, 10 s). In arteries with an intact endothelium the ability of each peptide to enhance responses to stimulation was the same whether applied through the lumen or to the adventitial surface. Removal of the endothelium, by gas perfusion, did not significantly alter the facilitatory effects of extraluminally or intraluminally applied angiotensin I or angiotensin II. The converting enzyme inhibitor enalaprilat was equally effective in inhibiting the facilitatory effect of angiotensin I in the presence and absence of an intact endothelium. It is concluded that in the rat caudal artery, conversion of angiotensin I to angiotensin II does not depend on an intact endothelium and that the facilitatory effect of angiotensin II on noradrenergic neuroeffector transmission is not modified by, or dependent on, an intact endothelium.

Full text

PDF
249

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiken J. W., Vane J. R. The renin--angiotensin system: inhibition of converting enzyme in isolated tissues. Nature. 1970 Oct 3;228(5266):30–34. doi: 10.1038/228030a0. [DOI] [PubMed] [Google Scholar]
  2. Cross R. B., Chalk J., South M., Liss B. The action of angiotensin on the isolated perfused cat heart. Life Sci. 1981 Aug 31;29(9):903–908. doi: 10.1016/0024-3205(81)90391-x. [DOI] [PubMed] [Google Scholar]
  3. DiSalvo J., Montefusco C. B. Conversion of angiotensin I to angiotensin II in the canine mesenteric circulation. Am J Physiol. 1971 Dec;221(6):1576–1579. doi: 10.1152/ajplegacy.1971.221.6.1576. [DOI] [PubMed] [Google Scholar]
  4. Dzau V. J. Vascular renin-angiotensin: a possible autocrine or paracrine system in control of vascular function. J Cardiovasc Pharmacol. 1984;6 (Suppl 2):S377–S382. [PubMed] [Google Scholar]
  5. Fishman J. A., Ryan G. B., Karnovsky M. J. Endothelial regeneration in the rat carotid artery and the significance of endothelial denudation in the pathogenesis of myointimal thickening. Lab Invest. 1975 Mar;32(3):339–351. [PubMed] [Google Scholar]
  6. Franklin W. G., Peach M. J., Gilmore J. P. Evidence for the renal conversion of angiotensin I in the dog. Circ Res. 1970 Sep;27(3):321–324. doi: 10.1161/01.res.27.3.321. [DOI] [PubMed] [Google Scholar]
  7. Furchgott R. F. Role of endothelium in responses of vascular smooth muscle. Circ Res. 1983 Nov;53(5):557–573. doi: 10.1161/01.res.53.5.557. [DOI] [PubMed] [Google Scholar]
  8. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  9. Ganten D., Hutchinson J. S., Schelling P., Ganten U., Fischer H. The iso-renin angiotensin systems in extrarenal tissue. Clin Exp Pharmacol Physiol. 1976 Mar-Apr;3(2):103–126. doi: 10.1111/j.1440-1681.1976.tb00596.x. [DOI] [PubMed] [Google Scholar]
  10. Johnson A. R., Erdös E. G. Metabolism of vasoactive peptides by human endothelial cells in culture. Angiotensin I converting enzyme (kininase II) and angiotensinase. J Clin Invest. 1977 Apr;59(4):684–695. doi: 10.1172/JCI108687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lanier S. M., Malik K. U. Attenuation by prostaglandins of the facilitatory effect of angiotensin II at adrenergic prejunctional sites in the isolated Krebs-perfused rat heart. Circ Res. 1982 Nov;51(5):594–601. doi: 10.1161/01.res.51.5.594. [DOI] [PubMed] [Google Scholar]
  12. Ljung B., Jandhyala B., Kjellstedt A. Angiotensin I converting enzyme activity in portal vein studied in normotensive rats and in models of primary and secondary hypertension. Acta Physiol Scand. 1981 Apr;111(4):409–416. doi: 10.1111/j.1748-1716.1981.tb06756.x. [DOI] [PubMed] [Google Scholar]
  13. Malik K. U., Nasjletti A. Facilitation of adrenergic transmission by locally generated angiotensin II in rat mesenteric arteries. Circ Res. 1976 Jan;38(1):26–30. doi: 10.1161/01.res.38.1.26. [DOI] [PubMed] [Google Scholar]
  14. Moncada S., Herman A. G., Higgs E. A., Vane J. R. Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the anti-thrombotic properties of vascular endothelium. Thromb Res. 1977 Sep;11(3):323–344. doi: 10.1016/0049-3848(77)90185-2. [DOI] [PubMed] [Google Scholar]
  15. Nakashima A., Angus J. A., Johnston C. I. Chronotropic effects of angiotensin I, angiotensin II, bradykinin and vasopressin in guinea pig atria. Eur J Pharmacol. 1982 Jul 16;81(3):479–485. doi: 10.1016/0014-2999(82)90113-3. [DOI] [PubMed] [Google Scholar]
  16. Ng K. K., Vane J. R. Conversion of angiotensin I to angiotensin II. Nature. 1967 Nov 25;216(5117):762–766. doi: 10.1038/216762a0. [DOI] [PubMed] [Google Scholar]
  17. Ody C., Junod A. F. Converting enzyme activity in endothelial cells isolated from pig pulmonary artery and aorta. Am J Physiol. 1977 Mar;232(3):C95–C98. doi: 10.1152/ajpcell.1977.232.3.C95. [DOI] [PubMed] [Google Scholar]
  18. Ryan J. W., Ryan U. S., Schultz D. R., Whitaker C., Chung A. Subcellular localization of pulmonary antiotensin-converting enzyme (kininase II). Biochem J. 1975 Feb;146(2):497–499. doi: 10.1042/bj1460497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Saye J. A., Singer H. A., Peach M. J. Role of endothelium in conversion of angiotensin I to angiotensin II in rabbit aorta. Hypertension. 1984 Mar-Apr;6(2 Pt 1):216–221. [PubMed] [Google Scholar]
  20. Spokas E. G., Folco G. C. Intima-related vasodilatation of the perfused rat caudal artery. Eur J Pharmacol. 1984 Apr 20;100(2):211–217. doi: 10.1016/0014-2999(84)90225-5. [DOI] [PubMed] [Google Scholar]
  21. Velletri P., Bean B. L. The effects of captopril on rat aortic angiotensin-converting enzyme. J Cardiovasc Pharmacol. 1982 Mar-Apr;4(2):315–325. doi: 10.1097/00005344-198203000-00022. [DOI] [PubMed] [Google Scholar]
  22. Webb R. C. Angiotensin II-induced relaxation of vascular smooth muscle. Blood Vessels. 1982;19(4):165–176. doi: 10.1159/000158382. [DOI] [PubMed] [Google Scholar]
  23. Ziogas J., Story D. F., Rand M. J. Effects of locally generated angiotensin II on noradrenergic transmission in guinea-pig isolated atria. Eur J Pharmacol. 1984 Oct 30;106(1):11–18. doi: 10.1016/0014-2999(84)90672-1. [DOI] [PubMed] [Google Scholar]
  24. Ziogas J., Story D. F., Rand M. J. Facilitation of noradrenergic transmission by locally generated angiotensin II in guinea-pig isolated atria and in the perfused caudal artery of the rat. Clin Exp Pharmacol Physiol. 1984 Jul-Aug;11(4):413–418. doi: 10.1111/j.1440-1681.1984.tb00290.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES