Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1986 Jul;88(3):671–676. doi: 10.1111/j.1476-5381.1986.tb10249.x

Chronic caffeine treatment reduces caffeine but not adenosine effects on cortical acetylcholine release.

R Corradetti, F Pedata, G Pepeu, M G Vannucchi
PMCID: PMC1916993  PMID: 3017491

Abstract

The effects of both adenosine and caffeine on the release of acetylcholine (ACh) were investigated in slices of cerebral cortex taken from rats pretreated for 30 days with caffeine (100 mg kg-1 daily, dissolved in their drinking water) at rest and during electrical stimulation at frequencies of 0.2, 1 and 5 Hz. The effect of this treatment on adenosine binding sites was also investigated in cortical membranes using N-cyclohexyl-[3H]-adenosine ([3H]-CHA) as a ligand. The chronic caffeine treatment did not change animal growth patterns. Spontaneous exploratory activity appeared to be increased at the 3rd day but was unchanged at the 30th day when compared with controls. Caffeine-treatment increased the number of high affinity binding sites for [3H]-CHA by 64% over the control values. Low affinity binding site density and affinity constants were unaffected. Adenosine 30 microM added to the superfusion fluid decreased electrically stimulated ACh release both in rats drinking tap water and rats drinking caffeine. In rats drinking tap water, caffeine added to the superfusion fluid at a concentration of 50 microM enhanced ACh release, while at 0.5 mM it decreased ACh output from the slices. Both effects were abolished by pretreatment with caffeine in vivo. The results indicate that prolonged consumption of high doses of caffeine causes changes in the responsiveness of cholinergic neurones to caffeine. The change is not shared by adenosine, through whose recognition sites caffeine is believed to act. It is therefore possible that the adaptive changes following repeated caffeine administration involve either only the coupler-transducer mechanism activated by the antagonist, or effects unrelated to receptors.

Full text

PDF
671

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beani L., Bianchi C., Giacomelli A., Tamberi F. Noradrenaline inhibition of acetylcholine release from guinea-pig brain. Eur J Pharmacol. 1978 Mar 15;48(2):179–193. doi: 10.1016/0014-2999(78)90327-8. [DOI] [PubMed] [Google Scholar]
  2. Boulenger J. P., Patel J., Post R. M., Parma A. M., Marangos P. J. Chronic caffeine consumption increases the number of brain adenosine receptors. Life Sci. 1983 Mar 7;32(10):1135–1142. doi: 10.1016/0024-3205(83)90119-4. [DOI] [PubMed] [Google Scholar]
  3. Butcher R. E., Vorhees C. V., Wootten V. Behavioral and physical development of rats chronically exposed to caffeinated fluids. Fundam Appl Toxicol. 1984 Feb;4(1):1–13. doi: 10.1016/0272-0590(84)90214-8. [DOI] [PubMed] [Google Scholar]
  4. Chou D. T., Khan S., Forde J., Hirsh K. R. Caffeine tolerance: behavioral, electrophysiological and neurochemical evidence. Life Sci. 1985 Jun 17;36(24):2347–2358. doi: 10.1016/0024-3205(85)90325-x. [DOI] [PubMed] [Google Scholar]
  5. Corradetti R., Kiedrowski L., Nordström O., Pepeu G. Disappearance of low affinity adenosine binding sites in aging rat cerebral cortex and hippocampus. Neurosci Lett. 1984 Aug 24;49(1-2):143–146. doi: 10.1016/0304-3940(84)90150-2. [DOI] [PubMed] [Google Scholar]
  6. Daly J. W. Adenosine receptors: targets for future drugs. J Med Chem. 1982 Mar;25(3):197–207. doi: 10.1021/jm00345a001. [DOI] [PubMed] [Google Scholar]
  7. Fredholm B. B. Adenosine actions and adenosine receptors after 1 week treatment with caffeine. Acta Physiol Scand. 1982 Jun;115(2):283–286. doi: 10.1111/j.1748-1716.1982.tb07078.x. [DOI] [PubMed] [Google Scholar]
  8. Goldstein A., Kaizer S., Whitby O. Psychotropic effects of caffeine in man. IV. Quantitative and qualitative differences associated with habituation to coffee. Clin Pharmacol Ther. 1969 Jul-Aug;10(4):489–497. doi: 10.1002/cpt1969104489. [DOI] [PubMed] [Google Scholar]
  9. Johnson P. N., Inesi G. The effect of methylxanthines and local anesthetics on fragmented sarcoplasmic reticulum. J Pharmacol Exp Ther. 1969 Oct;169(2):308–314. [PubMed] [Google Scholar]
  10. Klotz I. M. Numbers of receptor sites from Scatchard graphs: facts and fantasies. Science. 1982 Sep 24;217(4566):1247–1249. doi: 10.1126/science.6287580. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  13. Murray T. F. Up-regulation of rat cortical adenosine receptors following chronic administration of theophylline. Eur J Pharmacol. 1982 Aug 13;82(1-2):113–114. doi: 10.1016/0014-2999(82)90563-5. [DOI] [PubMed] [Google Scholar]
  14. Patel J., Marangos P. J., Stivers J., Goodwin F. K. Characterization of adenosine receptors in brain using N6 cyclohexyl [3H]adenosine. Brain Res. 1982 Apr 8;237(1):203–214. doi: 10.1016/0006-8993(82)90568-6. [DOI] [PubMed] [Google Scholar]
  15. Pedata F., Antonelli T., Lambertini L., Beani L., Pepeu G. Effect of adenosine, adenosine triphosphate, adenosine deaminase, dipyridamole and aminophylline on acetylcholine release from electrically-stimulated brain slices. Neuropharmacology. 1983 May;22(5):609–614. doi: 10.1016/0028-3908(83)90152-1. [DOI] [PubMed] [Google Scholar]
  16. Pedata F., Pepeu G., Spignoli G. Biphasic effect of methylxanthines on acetylcholine release from electrically-stimulated brain slices. Br J Pharmacol. 1984 Sep;83(1):69–73. doi: 10.1111/j.1476-5381.1984.tb10120.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pedata F., Slavikova J., Kotas A., Pepeu G. Acetylcholine release from rat cortical slices during postnatal development and aging. Neurobiol Aging. 1983 Spring;4(1):31–35. doi: 10.1016/0197-4580(83)90051-9. [DOI] [PubMed] [Google Scholar]
  18. Phillis J. W., Wu P. H. The role of adenosine and its nucleotides in central synaptic transmission. Prog Neurobiol. 1981;16(3-4):187–239. doi: 10.1016/0301-0082(81)90014-9. [DOI] [PubMed] [Google Scholar]
  19. Robertson D., Wade D., Workman R., Woosley R. L., Oates J. A. Tolerance to the humoral and hemodynamic effects of caffeine in man. J Clin Invest. 1981 Apr;67(4):1111–1117. doi: 10.1172/JCI110124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Smellie F. W., Davis C. W., Daly J. W., Wells J. N. Alkylxanthines: inhibition of adenosine-elicited accumulation of cyclic AMP in brain slices and of brain phosphodiesterase activity. Life Sci. 1979 Jun 25;24(26):2475–2482. doi: 10.1016/0024-3205(79)90458-2. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES