Abstract
Analogues of adenosine were injected intrathecally into rats implanted with chronic indwelling cannulae in order to determine a rank order of potency and hence characterize adenosine receptors involved in spinal antinociception. In the tail flick test L-N6-phenylisopropyl adenosine (L-PIA), cyclohexyladenosine (CHA) and 5'-N-ethylcarboxamide adenosine (NECA) produced dose-related antinociception which attained a plateau level. NECA and CHA also produced an additional distinct second phase of antinociception. D-N6-Phenylisopropyl adenosine (D-PIA) and 2-chloroadenosine (CADO) had very little antinociceptive activity in this test. The rank order of potency in producing the plateau effect was L-PIA greater than CHA greater than NECA greater than D-PIA = CADO, while that for the second phase of antinociception was NECA greater than-CHA. Pretreatment with both theophylline and 8-phenyltheophylline (8-PT) antagonized antinociception produced by CHA, with 8-PT being at least an order of magnitude more potent than theophylline. Both antagonists produced a significant hyperalgesia in the tail flick test. L-PIA and CHA also produced methylxanthine-sensitive antinociception in the hot plate test. These results suggest that activation of A1-receptors in the spinal cord can produce antinociception. Activation of A2-receptors may produce an additional effect, but the relative activity of CHA in this component of activity is unusual.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahlijanian M. K., Takemori A. E. Effects of (-)-N6-(R-phenylisopropyl)-adenosine (PIA) and caffeine on nociception and morphine-induced analgesia, tolerance and dependence in mice. Eur J Pharmacol. 1985 Jun 7;112(2):171–179. doi: 10.1016/0014-2999(85)90493-5. [DOI] [PubMed] [Google Scholar]
- Clanachan A. S. Antagonism of presynaptic adenosine receptors by theophylline 9-beta-D-riboside and 8-phenyltheophylline. Can J Physiol Pharmacol. 1981 Jun;59(6):603–606. doi: 10.1139/y81-091. [DOI] [PubMed] [Google Scholar]
- Daly J. W. Adenosine receptors: targets for future drugs. J Med Chem. 1982 Mar;25(3):197–207. doi: 10.1021/jm00345a001. [DOI] [PubMed] [Google Scholar]
- Duggan A. W., Griersmith B. T. Methyl xanthines, adenosine 3',5'-cyclic monophosphate and the spinal transmission of nociceptive information. Br J Pharmacol. 1979 Sep;67(1):51–57. [PMC free article] [PubMed] [Google Scholar]
- Geiger J. D., LaBella F. S., Nagy J. I. Characterization and localization of adenosine receptors in rat spinal cord. J Neurosci. 1984 Sep;4(9):2303–2310. doi: 10.1523/JNEUROSCI.04-09-02303.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodman R. R., Synder S. H. Autoradiographic localization of adenosine receptors in rat brain using [3H]cyclohexyladenosine. J Neurosci. 1982 Sep;2(9):1230–1241. doi: 10.1523/JNEUROSCI.02-09-01230.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffith S. G., Meghji P., Moody C. J., Burnstock G. 8-phenyltheophylline: a potent P1-purinoceptor antagonist. Eur J Pharmacol. 1981 Oct 15;75(1):61–64. doi: 10.1016/0014-2999(81)90346-0. [DOI] [PubMed] [Google Scholar]
- Holmgren M., Hednar T., Nordberg G., Mellstrand T. Antinociceptive effects in the rat of an adenosine analogue, N6-phenylisopropyladenosine. J Pharm Pharmacol. 1983 Oct;35(10):679–680. doi: 10.1111/j.2042-7158.1983.tb02867.x. [DOI] [PubMed] [Google Scholar]
- Jurna I. Cyclic nucleotides and aminophylline produce different effects on nociceptive motor and sensory responses in the rat spinal cord. Naunyn Schmiedebergs Arch Pharmacol. 1984 Aug;327(1):23–30. doi: 10.1007/BF00504987. [DOI] [PubMed] [Google Scholar]
- Paton D. M. Structure-activity relations for presynaptic inhibition of noradrenergic and cholinergic transmission by adenosine: evidence for action on A1 receptors. J Auton Pharmacol. 1981 Sep;1(4):287–290. doi: 10.1111/j.1474-8673.1981.tb00457.x. [DOI] [PubMed] [Google Scholar]
- Phillis J. W., Kirkpatrick J. R. The actions of adenosine and various nucleosides and nucleotides on the isolated toad spinal cord. Gen Pharmacol. 1978;9(4):239–247. doi: 10.1016/0306-3623(78)90043-5. [DOI] [PubMed] [Google Scholar]
- Post C. Antinociceptive effects in mice after intrathecal injection of 5'-N-ethylcarboxamide adenosine. Neurosci Lett. 1984 Oct 26;51(3):325–330. doi: 10.1016/0304-3940(84)90397-5. [DOI] [PubMed] [Google Scholar]
- Sawynok J., Moochhala S. M., Pillay D. J. Substance P, injected intrathecally, antagonizes the spinal antinociceptive effect of morphine, baclofen and noradrenaline. Neuropharmacology. 1984 Jul;23(7A):741–747. doi: 10.1016/0028-3908(84)90106-0. [DOI] [PubMed] [Google Scholar]
- Sawynok J. Theophylline-induced potentiation of the antinociceptive action of baclofen. Br J Pharmacol. 1983 Feb;78(2):353–357. doi: 10.1111/j.1476-5381.1983.tb09400.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smellie F. W., Daly J. W., Dunwiddie T. V., Hoffer B. J. The dextro and levorotatory isomers of N-phenylisopropyladenosine: stereospecific effects on cyclic AMP-formation and evoked synaptic responses in brain slices. Life Sci. 1979 Nov 12;25(20):1739–1748. doi: 10.1016/0024-3205(79)90477-6. [DOI] [PubMed] [Google Scholar]
- Smellie F. W., Davis C. W., Daly J. W., Wells J. N. Alkylxanthines: inhibition of adenosine-elicited accumulation of cyclic AMP in brain slices and of brain phosphodiesterase activity. Life Sci. 1979 Jun 25;24(26):2475–2482. doi: 10.1016/0024-3205(79)90458-2. [DOI] [PubMed] [Google Scholar]
- Vapaatalo H., Onken D., Neuvonen P. J., Westermann E. Stereospecificity in some central and circulatory effects of phenylisopropyl-adenosine (PIA). Arzneimittelforschung. 1975 Mar;25(3):407–410. [PubMed] [Google Scholar]
- Wu P. H., Phillis J. W., Thierry D. L. Adenosine receptor agonists inhibit K+-evoked Ca2+ uptake by rat brain cortical synaptosomes. J Neurochem. 1982 Sep;39(3):700–708. doi: 10.1111/j.1471-4159.1982.tb07949.x. [DOI] [PubMed] [Google Scholar]
- Yarbrough G. G., McGuffin-Clineschmidt J. C. In vivo behavioral assessment of central nervous system purinergic receptors. Eur J Pharmacol. 1981 Dec 3;76(2-3):137–144. doi: 10.1016/0014-2999(81)90495-7. [DOI] [PubMed] [Google Scholar]
- van Calker D., Müller M., Hamprecht B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem. 1979 Nov;33(5):999–1005. doi: 10.1111/j.1471-4159.1979.tb05236.x. [DOI] [PubMed] [Google Scholar]