Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1986 May;88(1):41–49. doi: 10.1111/j.1476-5381.1986.tb09469.x

Thyroxine treatment of aged or young rats demonstrates that vascular responses mediated by beta-adrenoceptor subtypes can be differentially regulated.

S R O'Donnell, J C Wanstall
PMCID: PMC1917093  PMID: 2871884

Abstract

Responses to vascular relaxant drugs were obtained on KCl (15 mM)-contracted isolated ring preparations of pulmonary artery and aorta from young (1-2 months old) and aged (greater than 16 months old) rats. These vessels contain both beta 1- and beta 2-adrenoceptors. Relaxant responses (i.e. relaxation expressed as a % of the KCl-induced contraction) to isoprenaline, procaterol (beta 2-selective partial agonist), fenoterol (beta 2-selective) and noradrenaline (beta 1-selective) but not those of forskolin, 3-isobutyl-1-methylxanthine, enprofylline or sodium nitrite, were smaller on preparations from aged rats than on those from young rats. Thyroxine (T4)-treatment (1 mg kg-1 s.c. thrice weekly for 3-5 weeks) of aged or young rats enhanced responses to isoprenaline and noradrenaline but reduced those to procaterol, when compared with preparations from age-matched saline-treated control rats. The agonist order of potency, determined in young rats, was isoprenaline greater than noradrenaline greater than adrenaline in preparations from T4-treated rats compared with isoprenaline greater than adrenaline greater than noradrenaline in saline-treated control rats. It is concluded (a) that the age-related decline in vascular responses to beta-adrenoceptor agonists involves beta-adrenoceptor mechanisms specifically and possibly beta 2-adrenoceptors more than beta 1-adrenoceptors; and (b) that T4-treatment of rats enhances beta 1-adrenoceptor-mediated and reduces, or does not change, beta 2-adrenoceptor-mediated responses of preparations of rat pulmonary artery and aorta. In preparations from control rats beta 2-adrenoceptors were functionally predominant but in preparations from T4-treated rats beta 1-adrenoceptors appeared to become functionally predominant.

Full text

PDF
41

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Black J. W., Gerskowitch V. P., Leff P., Shankley N. P. Pharmacological analysis of beta-adrenoceptor-mediated agonism in the guinea-pig, isolated, right atrium. Br J Pharmacol. 1985 Mar;84(3):779–785. doi: 10.1111/j.1476-5381.1985.tb16161.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cohen M. L., Berkowitz B. A. Age-related changes in vascular responsiveness to cyclic nucleotides and contractile agonists. J Pharmacol Exp Ther. 1974 Oct;191(1):147–155. [PubMed] [Google Scholar]
  3. Cohen M. L., Blume A. S., Berkowitz B. A. Vascular adenylate cyclase: role of age and guanine nucleotide activation. Blood Vessels. 1977;14(1):25–42. doi: 10.1159/000158112. [DOI] [PubMed] [Google Scholar]
  4. Ericsson E., Lundholm L. Adrenergic beta-receptor activity and cyclic AMP metabolism in vascular smooth muscle; variations with age. Mech Ageing Dev. 1975 Jan-Feb;4(1):1–6. doi: 10.1016/0047-6374(75)90002-0. [DOI] [PubMed] [Google Scholar]
  5. Fleisch J. H., Hooker C. S. The relationship between age and relaxation of vascular smooth muscle in the rabbit and rat. Circ Res. 1976 Apr;38(4):243–249. doi: 10.1161/01.res.38.4.243. [DOI] [PubMed] [Google Scholar]
  6. Fleisch J. H., Maling H. M., Brodie B. B. Beta-receptor activity in aorta; variations with age and species. Circ Res. 1970 Feb;26(2):151–162. doi: 10.1161/01.res.26.2.151. [DOI] [PubMed] [Google Scholar]
  7. Lai E., Rosen O. M., Rubin C. S. Dexamethasone regulates the beta-adrenergic receptor subtype expressed by 3T3 L1 preadipocytes and adipocytes. J Biol Chem. 1982 Jun 25;257(12):6691–6696. [PubMed] [Google Scholar]
  8. Malbon C. C., Greenberg M. L. 3,3',5-triiodothyronine administration in vivo modulates the hormone-sensitive adenylate cyclase system of rat hepatocytes. J Clin Invest. 1982 Feb;69(2):414–426. doi: 10.1172/JCI110465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Minneman K. P., Dibner M. D., Wolfe B. B., Molinoff P. B. beta1- and beta2-Adrenergic receptors in rat cerebral cortex are independently regulated. Science. 1979 May 25;204(4395):866–868. doi: 10.1126/science.35829. [DOI] [PubMed] [Google Scholar]
  10. Minneman K. P., Hedberg A., Molinoff P. B. Comparison of beta adrenergic receptor subtypes in mammalian tissues. J Pharmacol Exp Ther. 1979 Dec;211(3):502–508. [PubMed] [Google Scholar]
  11. Minneman K. P., Hegstrand L. R., Molinoff P. B. Simultaneous determination of beta-1 and beta-2-adrenergic receptors in tissues containing both receptor subtypes. Mol Pharmacol. 1979 Jul;16(1):34–46. [PubMed] [Google Scholar]
  12. O'Connor S. W., Scarpace P. J., Abrass I. B. Age-associated decrease of adenylate cyclase activity in rat myocardium. Mech Ageing Dev. 1981 May;16(1):91–95. doi: 10.1016/0047-6374(81)90036-1. [DOI] [PubMed] [Google Scholar]
  13. O'Donnell S. R., Wanstall J. C. Beta-1 and beta-2 adrenoceptor-mediated responses in preparations of pulmonary artery and aorta from young and aged rats. J Pharmacol Exp Ther. 1984 Mar;228(3):733–738. [PubMed] [Google Scholar]
  14. O'Donnell S. R., Wanstall J. C. Demonstration of both beta 1- and beta 2-adrenoceptors mediating relaxation of isolated ring preparations of rat pulmonary artery. Br J Pharmacol. 1981 Nov;74(3):547–552. doi: 10.1111/j.1476-5381.1981.tb10463.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. O'Donnell S. R., Wanstall J. C. Pharmacological approaches to the characterization of beta-adrenoreceptor populations in tissues. J Auton Pharmacol. 1981 Sep;1(4):305–312. doi: 10.1111/j.1474-8673.1981.tb00460.x. [DOI] [PubMed] [Google Scholar]
  16. O'Donnell S. R., Wanstall J. C. Responses to the beta 2-selective agonist procaterol of vascular and atrial preparations with different functional beta-adrenoceptor populations. Br J Pharmacol. 1985 Jan;84(1):227–235. [PMC free article] [PubMed] [Google Scholar]
  17. Parker R. J., Berkowitz B. A., Lee C. H., Denckla W. D. Vascular relaxation, aging and thyroid hormones. Mech Ageing Dev. 1978 Dec;8(6):397–405. doi: 10.1016/0047-6374(78)90038-6. [DOI] [PubMed] [Google Scholar]
  18. Roth G. S., Hess G. D. Changes in the mechanisms of hormone and neurotransmitter action during aging: current status of the role of receptor and post-receptor alterations. A review. Mech Ageing Dev. 1982 Nov;20(3):175–194. doi: 10.1016/0047-6374(82)90086-0. [DOI] [PubMed] [Google Scholar]
  19. Scarpace P. J., Abrass I. B. Decreased beta-adrenergic agonist affinity and adenylate cyclase activity in senescent rat lung. J Gerontol. 1983 Mar;38(2):143–147. doi: 10.1093/geronj/38.2.143. [DOI] [PubMed] [Google Scholar]
  20. Scarpace P. J., Abrass I. B. Thyroid hormone regulation of beta-adrenergic receptor number in aging rats. Endocrinology. 1981 Apr;108(4):1276–1278. doi: 10.1210/endo-108-4-1276. [DOI] [PubMed] [Google Scholar]
  21. Seamon K. B., Daly J. W. Forskolin: a unique diterpene activator of cyclic AMP-generating systems. J Cyclic Nucleotide Res. 1981;7(4):201–224. [PubMed] [Google Scholar]
  22. Shima S., Akamatsu N., Hirai M., Kouyama H. Age-related alterations in the catecholamine-sensitive adenylate cyclase system of the prostate. Mol Pharmacol. 1985 Feb;27(2):218–222. [PubMed] [Google Scholar]
  23. Taylor S. E. Additional evidence against universal modulation of beta-adrenoceptor responses by excessive thyroxine. Br J Pharmacol. 1983 Apr;78(4):639–644. doi: 10.1111/j.1476-5381.1983.tb09414.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES