Abstract
Responses to vascular relaxant drugs were obtained on KCl (15 mM)-contracted isolated ring preparations of pulmonary artery and aorta from young (1-2 months old) and aged (greater than 16 months old) rats. These vessels contain both beta 1- and beta 2-adrenoceptors. Relaxant responses (i.e. relaxation expressed as a % of the KCl-induced contraction) to isoprenaline, procaterol (beta 2-selective partial agonist), fenoterol (beta 2-selective) and noradrenaline (beta 1-selective) but not those of forskolin, 3-isobutyl-1-methylxanthine, enprofylline or sodium nitrite, were smaller on preparations from aged rats than on those from young rats. Thyroxine (T4)-treatment (1 mg kg-1 s.c. thrice weekly for 3-5 weeks) of aged or young rats enhanced responses to isoprenaline and noradrenaline but reduced those to procaterol, when compared with preparations from age-matched saline-treated control rats. The agonist order of potency, determined in young rats, was isoprenaline greater than noradrenaline greater than adrenaline in preparations from T4-treated rats compared with isoprenaline greater than adrenaline greater than noradrenaline in saline-treated control rats. It is concluded (a) that the age-related decline in vascular responses to beta-adrenoceptor agonists involves beta-adrenoceptor mechanisms specifically and possibly beta 2-adrenoceptors more than beta 1-adrenoceptors; and (b) that T4-treatment of rats enhances beta 1-adrenoceptor-mediated and reduces, or does not change, beta 2-adrenoceptor-mediated responses of preparations of rat pulmonary artery and aorta. In preparations from control rats beta 2-adrenoceptors were functionally predominant but in preparations from T4-treated rats beta 1-adrenoceptors appeared to become functionally predominant.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Black J. W., Gerskowitch V. P., Leff P., Shankley N. P. Pharmacological analysis of beta-adrenoceptor-mediated agonism in the guinea-pig, isolated, right atrium. Br J Pharmacol. 1985 Mar;84(3):779–785. doi: 10.1111/j.1476-5381.1985.tb16161.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen M. L., Berkowitz B. A. Age-related changes in vascular responsiveness to cyclic nucleotides and contractile agonists. J Pharmacol Exp Ther. 1974 Oct;191(1):147–155. [PubMed] [Google Scholar]
- Cohen M. L., Blume A. S., Berkowitz B. A. Vascular adenylate cyclase: role of age and guanine nucleotide activation. Blood Vessels. 1977;14(1):25–42. doi: 10.1159/000158112. [DOI] [PubMed] [Google Scholar]
- Ericsson E., Lundholm L. Adrenergic beta-receptor activity and cyclic AMP metabolism in vascular smooth muscle; variations with age. Mech Ageing Dev. 1975 Jan-Feb;4(1):1–6. doi: 10.1016/0047-6374(75)90002-0. [DOI] [PubMed] [Google Scholar]
- Fleisch J. H., Hooker C. S. The relationship between age and relaxation of vascular smooth muscle in the rabbit and rat. Circ Res. 1976 Apr;38(4):243–249. doi: 10.1161/01.res.38.4.243. [DOI] [PubMed] [Google Scholar]
- Fleisch J. H., Maling H. M., Brodie B. B. Beta-receptor activity in aorta; variations with age and species. Circ Res. 1970 Feb;26(2):151–162. doi: 10.1161/01.res.26.2.151. [DOI] [PubMed] [Google Scholar]
- Lai E., Rosen O. M., Rubin C. S. Dexamethasone regulates the beta-adrenergic receptor subtype expressed by 3T3 L1 preadipocytes and adipocytes. J Biol Chem. 1982 Jun 25;257(12):6691–6696. [PubMed] [Google Scholar]
- Malbon C. C., Greenberg M. L. 3,3',5-triiodothyronine administration in vivo modulates the hormone-sensitive adenylate cyclase system of rat hepatocytes. J Clin Invest. 1982 Feb;69(2):414–426. doi: 10.1172/JCI110465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minneman K. P., Dibner M. D., Wolfe B. B., Molinoff P. B. beta1- and beta2-Adrenergic receptors in rat cerebral cortex are independently regulated. Science. 1979 May 25;204(4395):866–868. doi: 10.1126/science.35829. [DOI] [PubMed] [Google Scholar]
- Minneman K. P., Hedberg A., Molinoff P. B. Comparison of beta adrenergic receptor subtypes in mammalian tissues. J Pharmacol Exp Ther. 1979 Dec;211(3):502–508. [PubMed] [Google Scholar]
- Minneman K. P., Hegstrand L. R., Molinoff P. B. Simultaneous determination of beta-1 and beta-2-adrenergic receptors in tissues containing both receptor subtypes. Mol Pharmacol. 1979 Jul;16(1):34–46. [PubMed] [Google Scholar]
- O'Connor S. W., Scarpace P. J., Abrass I. B. Age-associated decrease of adenylate cyclase activity in rat myocardium. Mech Ageing Dev. 1981 May;16(1):91–95. doi: 10.1016/0047-6374(81)90036-1. [DOI] [PubMed] [Google Scholar]
- O'Donnell S. R., Wanstall J. C. Beta-1 and beta-2 adrenoceptor-mediated responses in preparations of pulmonary artery and aorta from young and aged rats. J Pharmacol Exp Ther. 1984 Mar;228(3):733–738. [PubMed] [Google Scholar]
- O'Donnell S. R., Wanstall J. C. Demonstration of both beta 1- and beta 2-adrenoceptors mediating relaxation of isolated ring preparations of rat pulmonary artery. Br J Pharmacol. 1981 Nov;74(3):547–552. doi: 10.1111/j.1476-5381.1981.tb10463.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Donnell S. R., Wanstall J. C. Pharmacological approaches to the characterization of beta-adrenoreceptor populations in tissues. J Auton Pharmacol. 1981 Sep;1(4):305–312. doi: 10.1111/j.1474-8673.1981.tb00460.x. [DOI] [PubMed] [Google Scholar]
- O'Donnell S. R., Wanstall J. C. Responses to the beta 2-selective agonist procaterol of vascular and atrial preparations with different functional beta-adrenoceptor populations. Br J Pharmacol. 1985 Jan;84(1):227–235. [PMC free article] [PubMed] [Google Scholar]
- Parker R. J., Berkowitz B. A., Lee C. H., Denckla W. D. Vascular relaxation, aging and thyroid hormones. Mech Ageing Dev. 1978 Dec;8(6):397–405. doi: 10.1016/0047-6374(78)90038-6. [DOI] [PubMed] [Google Scholar]
- Roth G. S., Hess G. D. Changes in the mechanisms of hormone and neurotransmitter action during aging: current status of the role of receptor and post-receptor alterations. A review. Mech Ageing Dev. 1982 Nov;20(3):175–194. doi: 10.1016/0047-6374(82)90086-0. [DOI] [PubMed] [Google Scholar]
- Scarpace P. J., Abrass I. B. Decreased beta-adrenergic agonist affinity and adenylate cyclase activity in senescent rat lung. J Gerontol. 1983 Mar;38(2):143–147. doi: 10.1093/geronj/38.2.143. [DOI] [PubMed] [Google Scholar]
- Scarpace P. J., Abrass I. B. Thyroid hormone regulation of beta-adrenergic receptor number in aging rats. Endocrinology. 1981 Apr;108(4):1276–1278. doi: 10.1210/endo-108-4-1276. [DOI] [PubMed] [Google Scholar]
- Seamon K. B., Daly J. W. Forskolin: a unique diterpene activator of cyclic AMP-generating systems. J Cyclic Nucleotide Res. 1981;7(4):201–224. [PubMed] [Google Scholar]
- Shima S., Akamatsu N., Hirai M., Kouyama H. Age-related alterations in the catecholamine-sensitive adenylate cyclase system of the prostate. Mol Pharmacol. 1985 Feb;27(2):218–222. [PubMed] [Google Scholar]
- Taylor S. E. Additional evidence against universal modulation of beta-adrenoceptor responses by excessive thyroxine. Br J Pharmacol. 1983 Apr;78(4):639–644. doi: 10.1111/j.1476-5381.1983.tb09414.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
