Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1986 May;88(1):9–18. doi: 10.1111/j.1476-5381.1986.tb09465.x

The effects of nisoldipine (Bay K 5552) on cardiovascular performance and regional blood flow in pentobarbital-anaesthetized pigs with or without beta-adrenoceptor blockade.

D J Duncker, J M Hartog, P G Hugenholtz, P R Saxena, P D Verdouw
PMCID: PMC1917105  PMID: 2871886

Abstract

The effects of the 1,4-dihydropyridine derivative nisoldipine, infused intravenously (i.v.) at 3 different rates (0.25, 0.5 and 1.0 microgram kg-1 min-1), were studied in anaesthetized pigs on cardiovascular performance with or without beta-adrenoceptor blockade produced by propranolol. Nisoldipine caused dose-dependent decreases in arterial blood pressure (30%), systemic vascular resistance (30%) and left ventricular filling pressure (15%), but raised heart rate (25%) and LV dP/dt max (20%). Cardiac output was not significantly affected. Transmural myocardial blood flow and vascular conductances increased dose-dependently after nisoldipine. The elevation in blood flow to the left ventricle favoured epicardial layers. Endocardial blood flow showed small increases as the changes in conductance of the endocardial layer more than compensated for the loss in perfusion pressure. The endo-epi blood flow ratio decreased from 1.16 +/- 0.05 to 0.70 +/- 0.01. Myocardial O2-consumption was unaltered as the decrease in arterial-coronary venous O2-content difference (30%) was balanced by the increase in transmural blood flow. Nisoldipine increased blood flow to skeletal muscle (500%), stomach (50%) and adrenals (25%), but decreased that to the liver (50%), spleen (25%) and kidneys (25%). No changes were noticed in the small intestine, skin and brain. In spite of differential effects on blood flow, vascular conductance in all organs and tissues, with the exception of the liver, increased. After beta-adrenoceptor blockade the responses of mean arterial blood pressure, cardiac output and systemic vascular resistance to nisoldipine remained virtually unchanged, but the elevations in heart rate and LV dP/dt max were abolished, as was the decrease in left ventricular filling pressure. A higher dose of nisoldipine was required after beta-adrenoceptor blockade to elicit significant vasodilatation in the epi- and endocardial layers. However, the reduction in endo-epi blood flow ratio by nisoldipine was not affected by propranolol. Myocardial O2-consumption tended to decrease as the diminution in the arterial-coronary venous O2-content difference (30%) slightly exceeded the increase of left ventricular blood flow (30%). Except for the brain and liver, effects of nisoldipine on regional vascular conductances were attenuated after beta-adrenoceptor blockade.

Full text

PDF
9

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolt G. R., Saxena P. R. Acute systemic and regional hemodynamic effects of felodipine, a new calcium antagonist, in conscious renal hypertensive rabbits. J Cardiovasc Pharmacol. 1984 Jul-Aug;6(4):707–712. doi: 10.1097/00005344-198407000-00025. [DOI] [PubMed] [Google Scholar]
  2. Bolt G. R., Saxena P. R. Interaction of atenolol with the systemic and regional hemodynamic effects of hydralazine in conscious renal hypertensive rabbits. J Pharmacol Exp Ther. 1984 Jul;230(1):205–213. [PubMed] [Google Scholar]
  3. Drexler H., Flaim S. F., Fields R. H., Zelis R. Effects of nisoldipine on cardiocirculatory dynamics and cardiac output distribution in conscious rats at rest and during treadmill exercise. J Pharmacol Exp Ther. 1985 Feb;232(2):376–381. [PubMed] [Google Scholar]
  4. Gross R., Kirchheim H., von Olshausen K. Effects of nifedipine on coronary and systemic hemodynamics in the conscious dog. Arzneimittelforschung. 1979;29(9):1361–1368. [PubMed] [Google Scholar]
  5. Hof R. P. Calcium antagonist and the peripheral circulation: differences and similarities between PY 108-068, nicardipine, verapamil and diltiazem. Br J Pharmacol. 1983 Feb;78(2):375–394. doi: 10.1111/j.1476-5381.1983.tb09403.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hof R. P., Scholtysik G. Effects of the calcium antagonist PY 108-068 on myocardial tissues in vitro and on reflex tachycardia in vivo. J Cardiovasc Pharmacol. 1983 Mar-Apr;5(2):176–183. doi: 10.1097/00005344-198303000-00002. [DOI] [PubMed] [Google Scholar]
  7. Kazda S., Garthoff B., Meyer H., Schlossmann K., Stoepel K., Towart R., Vater W., Wehinger E. Pharmacology of a new calcium antagonistic compound, isobutyl methyl 1,4-dihydro-2,6-dimethyl-4(2-nitrophenyl)-3,5-pyridinedicarboxylate (Nisoldipine, Bay k 5552). Arzneimittelforschung. 1980;30(12):2144–2162. [PubMed] [Google Scholar]
  8. Nakaya H., Schwartz A., Millard R. W. Reflex chronotropic and inotropic effects of calcium channel-blocking agents in conscious dogs. Diltiazem, verapamil, and nifedipine compared. Circ Res. 1983 Mar;52(3):302–311. doi: 10.1161/01.res.52.3.302. [DOI] [PubMed] [Google Scholar]
  9. Oesterle S. N., Schroeder J. S. Calcium-entry blockade, beta-adrenergic blockade and the reflex control of circulation. Circulation. 1982 Apr;65(4):669–670. doi: 10.1161/01.cir.65.4.669. [DOI] [PubMed] [Google Scholar]
  10. Opie L. H., White D. A. Adverse interaction between nifedipine and beta-blockade. Br Med J. 1980 Nov 29;281(6253):1462–1462. doi: 10.1136/bmj.281.6253.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Packer M., Meller J., Medina N., Yushak M., Smith H., Holt J., Guererro J., Todd G. D., McAllister R. G., Jr, Gorlin R. Hemodynamic consequences of combined beta-adrenergic and slow calcium channel blockade in man. Circulation. 1982 Apr;65(4):660–668. doi: 10.1161/01.cir.65.4.660. [DOI] [PubMed] [Google Scholar]
  12. Robson R. H., Vishwanath M. C. Nifedipine and beta-blockade as a cause of cardiac failure. Br Med J (Clin Res Ed) 1982 Jan 9;284(6309):104–104. doi: 10.1136/bmj.284.6309.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rousseau M. F., Vincent M. F., Van Hoof F., Van den Berghe G., Charlier A. A., Pouleur H. Effects of nicardipine and nisoldipine on myocardial metabolism, coronary blood flow and oxygen supply in angina pectoris. Am J Cardiol. 1984 Dec 1;54(10):1189–1194. doi: 10.1016/s0002-9149(84)80065-x. [DOI] [PubMed] [Google Scholar]
  14. Saxena P. R., Schamhardt H. C., Forsyth R. P., Hoeve J. Computer programs for the radioactive microsphere technique. Determination of regional blood flows and other haemodynamic variables in different experimental circumstances. Comput Programs Biomed. 1980 Dec;12(2-3):63–84. doi: 10.1016/0010-468x(80)90053-7. [DOI] [PubMed] [Google Scholar]
  15. Saxena P. R., Verdouw P. D. 5-Carboxamide tryptamine, a compound with high affinity for 5-hydroxytryptamine1 binding sites, dilates arterioles and constricts arteriovenous anastomoses. Br J Pharmacol. 1985 Feb;84(2):533–544. doi: 10.1111/j.1476-5381.1985.tb12938.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Spedding M. Differences between the effects of calcium antagonists in the pithed rat preparation. J Cardiovasc Pharmacol. 1982 Nov-Dec;4(6):973–979. doi: 10.1097/00005344-198211000-00015. [DOI] [PubMed] [Google Scholar]
  17. THURAU K., KRAMER K. Weitere Untersuchungen zur myogenen Natur der Autoregulation des Nierenkreislaufes; Aufhebung der Autoregulation durch muskulotrope Substanzen und druckpassives Verhalten des Glomerulusfiltrates. Pflugers Arch. 1959;269(1):77–93. doi: 10.1007/BF00362973. [DOI] [PubMed] [Google Scholar]
  18. Van Boom M. P., Saxena P. R. Tissue blood flow changes induced by propranolol infusion in conscious normotensive and renal hypertensive rabbits. Arch Int Pharmacodyn Ther. 1983 Jul;264(1):96–109. [PubMed] [Google Scholar]
  19. Vatner S. F., Hintze T. H. Effects of a calcium-channel antagonist on large and small coronary arteries in conscious dogs. Circulation. 1982 Sep;66(3):579–588. doi: 10.1161/01.cir.66.3.579. [DOI] [PubMed] [Google Scholar]
  20. Verdouw P. D., Slager C. J., Van Bremen R. H., Verkeste C. M. Is nisoldipine capable of reducing left ventricular preload? Eur J Pharmacol. 1984 Feb 10;98(1):137–140. doi: 10.1016/0014-2999(84)90120-1. [DOI] [PubMed] [Google Scholar]
  21. Vogt A., Kreuzer H. Hemodynamic effects of nisoldipine in chronic congestive heart failure. Arzneimittelforschung. 1983;33(6):877–879. [PubMed] [Google Scholar]
  22. Vogt A., Neuhaus K. L., Kreuzer H. Hemodynamic effects of the new vasodilator drug Bay k 5552 in man. Arzneimittelforschung. 1980;30(12):2162–2164. [PubMed] [Google Scholar]
  23. Warltier D. C., Meils C. M., Gross G. J., Brooks H. L. Blood flow in normal and acutely ischemic myocardium after verapamil, diltiazem and nisoldipine (Bay k 5552), a new dihydropyridine calcium antagonist. J Pharmacol Exp Ther. 1981 Jul;218(1):296–302. [PubMed] [Google Scholar]
  24. Warltier D. C., Zyvoloski M. G., Gross G. J., Brooks H. L. Comparative actions of dihydropyridine slow channel calcium blocking agents in conscious dogs: alterations in baroreflex sensitivity. J Pharmacol Exp Ther. 1984 Aug;230(2):376–382. [PubMed] [Google Scholar]
  25. Warltier D. C., Zyvoloski M. G., Gross G. J., Brooks H. L. Comparative actions of dihydropyridine slow channel calcium blocking agents in conscious dogs: systemic and coronary hemodynamics with and without combined beta adrenergic blockade. J Pharmacol Exp Ther. 1984 Aug;230(2):367–375. [PubMed] [Google Scholar]
  26. Wolffenbuttel B. H., Verdouw P. D. Nifedipine and myocardial performance in the presence and absence of beta-blockade with propranolol. Arch Int Pharmacodyn Ther. 1983 Nov;266(1):83–92. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES