Abstract
Isolated superior mesenteric veins from portal hypertensive rats were 3 to 10 times more sensitive to 5-hydroxytryptamine (5-HT) and 3 times less sensitive to (-)-noradrenaline than veins from sham-operated rats. The sensitivity to vasopressin did not differ in the 2 groups. Ketanserin competitively antagonized the effects of 5-HT in superior mesenteric veins and portal veins with high affinity (KB values 0.1-0.3 nM), as expected for 5-HT2-receptors. The affinity of ketanserin for 5-HT2-receptors was similar in veins from normal, sham-operated or portal-hypertensive rats. Intraportal injections of low doses of 5-HT caused increases in portal pressure which were more pronounced in portal hypertensive rats than in sham-operated rats and were blocked by 0.3 mg kg-1 ketanserin in both groups. Ketanserin 0.3 mg kg-1 did not block the portal pressor response to (-)-noradrenaline in either group of rats. In portal hypertensive rats but not in sham-operated rats, 0.3 mg kg-1 ketanserin caused decreases in portal pressure, portal flow and cardiac output, as estimated by radioactive microspheres. The reduction in portal pressure caused by ketanserin was due mainly to a decrease in portal venous inflow secondary to a decreased cardiac output. The reduction in cardiac output, which was observed only in the portal hypertensive rats but not in sham-operated rats, is consistent with venous dilatation and pooling of blood in the portal venous system. The venous pooling could be secondary to the blockade of 5-HT2-receptors in the portal venous system. It is proposed that ketanserin should be explored for the treatment of patients with portal hypertension.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARUNLAKSHANA O., SCHILD H. O. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959 Mar;14(1):48–58. doi: 10.1111/j.1476-5381.1959.tb00928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bichet D. G., Van Putten V. J., Schrier R. W. Potential role of increased sympathetic activity in impaired sodium and water excretion in cirrhosis. N Engl J Med. 1982 Dec 16;307(25):1552–1557. doi: 10.1056/NEJM198212163072504. [DOI] [PubMed] [Google Scholar]
- Blinks J. R. Convenient apparatus for recording contractions of isolated heart muscle. J Appl Physiol. 1965 Jul;20(4):755–757. doi: 10.1152/jappl.1965.20.4.755. [DOI] [PubMed] [Google Scholar]
- Cohen R. A., Shepherd J. T., Vanhoutte P. M. 5-Hydroxytryptamine can mediate endothelium-dependent relaxation of coronary arteries. Am J Physiol. 1983 Dec;245(6):H1077–H1080. doi: 10.1152/ajpheart.1983.245.6.H1077. [DOI] [PubMed] [Google Scholar]
- Drew G. M., Whiting S. B. Evidence for two distinct types of postsynaptic alpha-adrenoceptor in vascular smooth muscle in vivo. Br J Pharmacol. 1979 Oct;67(2):207–215. doi: 10.1111/j.1476-5381.1979.tb08668.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fozard J. R. Mechanism of the hypotensive effect of ketanserin. J Cardiovasc Pharmacol. 1982 Sep-Oct;4(5):829–838. doi: 10.1097/00005344-198209000-00020. [DOI] [PubMed] [Google Scholar]
- Fozard J. R., Mobarok Ali A. T., Newgrosh G. Blockade of serotonin receptors on autonomic neurones by (-)-cocaine and some related compounds. Eur J Pharmacol. 1979 Nov 16;59(3-4):195–210. doi: 10.1016/0014-2999(79)90282-6. [DOI] [PubMed] [Google Scholar]
- Frenken M., Kaumann A. J. Interaction of ketanserin and its metabolite ketanserinol with 5HT2 receptors in pulmonary and coronary arteries of calf. Naunyn Schmiedebergs Arch Pharmacol. 1984 Jul;326(4):334–339. doi: 10.1007/BF00501438. [DOI] [PubMed] [Google Scholar]
- Greenway C. V. Role of splanchnic venous system in overall cardiovascular homeostasis. Fed Proc. 1983 Apr;42(6):1678–1684. [PubMed] [Google Scholar]
- Groszmann R. J., Vorobioff J., Riley E. Splanchnic hemodynamics in portal-hypertensive rats: measurement with gamma-labeled microspheres. Am J Physiol. 1982 Feb;242(2):G156–G160. doi: 10.1152/ajpgi.1982.242.2.G156. [DOI] [PubMed] [Google Scholar]
- Halvorsen J. F., Myking A. O. The porto-systemic collateral pattern in the rat. An angiographic and anatomical study after partial occlusion of the portal vein. Eur Surg Res. 1974;6(3):183–195. doi: 10.1159/000127720. [DOI] [PubMed] [Google Scholar]
- Ishise S., Pegram B. L., Yamamoto J., Kitamura Y., Frohlich E. D. Reference sample microsphere method: cardiac output and blood flows in conscious rat. Am J Physiol. 1980 Oct;239(4):H443–H449. doi: 10.1152/ajpheart.1980.239.4.H443. [DOI] [PubMed] [Google Scholar]
- Johansson B. Structural and functional changes in rat portal veins after experimental portal hypertension. Acta Physiol Scand. 1976 Nov;98(3):381–383. doi: 10.1111/j.1748-1716.1976.tb10324.x. [DOI] [PubMed] [Google Scholar]
- Kaumann A. J., Frenken M. A paradox: the 5-HT2-receptor antagonist ketanserin restores the 5-HT-induced contraction depressed by methysergide in large coronary arteries of calf. Allosteric regulation of 5-HT2-receptors. Naunyn Schmiedebergs Arch Pharmacol. 1985 Jan;328(3):295–300. doi: 10.1007/BF00515556. [DOI] [PubMed] [Google Scholar]
- Kaumann A. J. Yohimbine and rauwolscine inhibit 5-hydroxytryptamine-induced contraction of large coronary arteries of calf through blockade of 5 HT2 receptors. Naunyn Schmiedebergs Arch Pharmacol. 1983 Jun;323(2):149–154. doi: 10.1007/BF00634263. [DOI] [PubMed] [Google Scholar]
- Kravetz D., Sikuler E., Groszmann R. J. Splanchnic and systemic hemodynamics in portal hypertensive rats during hemorrhage and blood volume restitution. Gastroenterology. 1986 May;90(5 Pt 1):1232–1240. doi: 10.1016/0016-5085(86)90390-2. [DOI] [PubMed] [Google Scholar]
- Kroeger R. J., Groszmann R. J. Increased portal venous resistance hinders portal pressure reduction during the administration of beta-adrenergic blocking agents in a portal hypertensive model. Hepatology. 1985 Jan-Feb;5(1):97–101. doi: 10.1002/hep.1840050120. [DOI] [PubMed] [Google Scholar]
- Kroeger R. J., Groszmann R. J. The effect of the combination of nitroglycerin and propranolol on splanchnic and systemic hemodynamics in a portal hypertensive rat model. Hepatology. 1985 May-Jun;5(3):425–430. doi: 10.1002/hep.1840050314. [DOI] [PubMed] [Google Scholar]
- Leysen J. E., Niemegeers C. J., Van Nueten J. M., Laduron P. M. [3H]Ketanserin (R 41 468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol. 1982 Mar;21(2):301–314. [PubMed] [Google Scholar]
- Ljung B., Bevan J. A., Su C. Evidence for uneven alpha-receptor distribution in the rat portal vein. Circ Res. 1973 May;32(5):556–563. doi: 10.1161/01.res.32.5.556. [DOI] [PubMed] [Google Scholar]
- Nicholls K. M., Shapiro M. D., Van Putten V. J., Kluge R., Chung H. M., Bichet D. G., Schrier R. W. Elevated plasma norepinephrine concentrations in decompensated cirrhosis. Association with increased secretion rates, normal clearance rates, and suppressibility by central blood volume expansion. Circ Res. 1985 Mar;56(3):457–461. doi: 10.1161/01.res.56.3.457. [DOI] [PubMed] [Google Scholar]
- Persson B., Hedner T., Henning M. Cardiovascular effects in the rat of ketanserin, a novel 5-hydroxytryptamine receptor blocking agent. J Pharm Pharmacol. 1982 Jul;34(7):442–445. doi: 10.1111/j.2042-7158.1982.tb04753.x. [DOI] [PubMed] [Google Scholar]
- Richardson P. D., Withrington P. G. A comparison of the effects of bradykinin, 5-hydroxytryptamine and histamine on the hepatic arterial and portal venous vascular beds of the dog: histamine H1 and H2-receptor populations. Br J Pharmacol. 1977 May;60(1):123–133. doi: 10.1111/j.1476-5381.1977.tb16756.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ring-Larsen H., Hesse B., Henriksen J. H., Christensen N. J. Sympathetic nervous activity and renal and systemic hemodynamics in cirrhosis: plasma norepinephrine concentration, hepatic extraction, and renal release. Hepatology. 1982 May-Jun;2(3):304–310. doi: 10.1002/hep.1840020303. [DOI] [PubMed] [Google Scholar]
- Sikuler E., Groszmann R. J. Interaction of flow and resistance in maintenance of portal hypertension in a rat model. Am J Physiol. 1986 Feb;250(2 Pt 1):G205–G212. doi: 10.1152/ajpgi.1986.250.2.G205. [DOI] [PubMed] [Google Scholar]
- Sikuler E., Kravetz D., Groszmann R. J. Evolution of portal hypertension and mechanisms involved in its maintenance in a rat model. Am J Physiol. 1985 Jun;248(6 Pt 1):G618–G625. doi: 10.1152/ajpgi.1985.248.6.G618. [DOI] [PubMed] [Google Scholar]
- Thoa N. B., Eccleston D., Axelrod J. The accumulation of C14-serotonin in the guinea-pig vas deferens. J Pharmacol Exp Ther. 1969 Sep;169(1):68–73. [PubMed] [Google Scholar]
- Van Nueten J. M., Janssen P. A., Van Beek J., Xhonneux R., Verbeuren T. J., Vanhoutte P. M. Vascular effects of ketanserin (R 41 468), a novel antagonist of 5-HT2 serotonergic receptors. J Pharmacol Exp Ther. 1981 Jul;218(1):217–230. [PubMed] [Google Scholar]
- Vorobioff J., Bredfeldt J. E., Groszmann R. J. Hyperdynamic circulation in portal-hypertensive rat model: a primary factor for maintenance of chronic portal hypertension. Am J Physiol. 1983 Jan;244(1):G52–G57. doi: 10.1152/ajpgi.1983.244.1.G52. [DOI] [PubMed] [Google Scholar]
