Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Jul;71(7):4915–4920. doi: 10.1128/jvi.71.7.4915-4920.1997

Expression of the poliovirus receptor in intestinal epithelial cells is not sufficient to permit poliovirus replication in the mouse gut.

S Zhang 1, V R Racaniello 1
PMCID: PMC191721  PMID: 9188553

Abstract

Although the initial site of poliovirus replication in humans is the intestine, previously isolated transgenic mice which carry the human poliovirus receptor (PVR) gene (TgPVR mice), which develop poliomyelitis after intracerebral inoculation, are not susceptible to infection by the oral route. The low levels of PVR expressed in the TgPVR mouse intestine might explain the absence of poliovirus replication at that site. To ascertain whether PVR is the sole determinant of poliovirus susceptibility of the mouse intestine, we have generated transgenic mice by using the promoter for rat intestine fatty acid binding protein to direct PVR expression in mouse gut. Pvr was detected by immunohistochemistry in the enterocytes and M cells of transgenic mouse (TgFABP-PVR) small intestine. Upon oral inoculation with poliovirus, no increase in virus titer was detected in the feces of TgFABP-PVR mice, and no virus replication was observed in the small intestine, although poliovirus replicated in the brain after intracerebral inoculation. The failure of poliovirus to replicate in the TgFABP-PVR mouse small intestine was not due to lack of virus binding sites, because poliovirus could attach to fragments of small intestine from these mice. These results indicate that the inability of poliovirus to replicate in the mouse alimentary tract is not solely due to the absence of virus receptor, and other factors are involved in determining the ability of poliovirus to replicate in the mouse gut.

Full Text

The Full Text of this article is available as a PDF (581.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BODIAN D. Emerging concept of poliomyelitis infection. Science. 1955 Jul 15;122(3159):105–108. doi: 10.1126/science.122.3159.105. [DOI] [PubMed] [Google Scholar]
  2. Bouchard M. J., Racaniello V. R. CD44 is not required for poliovirus replication. J Virol. 1997 Apr;71(4):2793–2798. doi: 10.1128/jvi.71.4.2793-2798.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brinster R. L., Allen J. M., Behringer R. R., Gelinas R. E., Palmiter R. D. Introns increase transcriptional efficiency in transgenic mice. Proc Natl Acad Sci U S A. 1988 Feb;85(3):836–840. doi: 10.1073/pnas.85.3.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown R. H., Jr, Johnson D., Ogonowski M., Weiner H. L. Type 1 human poliovirus binds to human synaptosomes. Ann Neurol. 1987 Jan;21(1):64–70. doi: 10.1002/ana.410210112. [DOI] [PubMed] [Google Scholar]
  5. Freistadt M. S., Eberle K. E. CD44 is not required for poliovirus replication in cultured cells and does not limit replication in monocytes. Virology. 1996 Oct 15;224(2):542–547. doi: 10.1006/viro.1996.0561. [DOI] [PubMed] [Google Scholar]
  6. Freistadt M. S., Kaplan G., Racaniello V. R. Heterogeneous expression of poliovirus receptor-related proteins in human cells and tissues. Mol Cell Biol. 1990 Nov;10(11):5700–5706. doi: 10.1128/mcb.10.11.5700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HOLLAND J. J. Receptor affinities as major determinants of enterovirus tissue tropisms in humans. Virology. 1961 Nov;15:312–326. doi: 10.1016/0042-6822(61)90363-4. [DOI] [PubMed] [Google Scholar]
  8. Kanamitsu M., Kasamaki A., Ogawa M., Kasahara S., Imamura M. Immunofluorescent study on the pathogenesis of oral infection of poliovirus in monkeys. Jpn J Med Sci Biol. 1967 Apr;20(2):175–194. doi: 10.7883/yoken1952.20.175. [DOI] [PubMed] [Google Scholar]
  9. Koike S., Taya C., Kurata T., Abe S., Ise I., Yonekawa H., Nomoto A. Transgenic mice susceptible to poliovirus. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):951–955. doi: 10.1073/pnas.88.3.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lang K. M., Spritz R. A. Cloning specific complete polyadenylylated 3'-terminal cDNA segments. Gene. 1985;33(2):191–196. doi: 10.1016/0378-1119(85)90093-9. [DOI] [PubMed] [Google Scholar]
  11. Mendelsohn C. L., Wimmer E., Racaniello V. R. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell. 1989 Mar 10;56(5):855–865. doi: 10.1016/0092-8674(89)90690-9. [DOI] [PubMed] [Google Scholar]
  12. Morrison M. E., He Y. J., Wien M. W., Hogle J. M., Racaniello V. R. Homolog-scanning mutagenesis reveals poliovirus receptor residues important for virus binding and replication. J Virol. 1994 Apr;68(4):2578–2588. doi: 10.1128/jvi.68.4.2578-2588.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Racaniello V. R., Baltimore D. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science. 1981 Nov 20;214(4523):916–919. doi: 10.1126/science.6272391. [DOI] [PubMed] [Google Scholar]
  14. Racaniello V. R., Ren R. Poliovirus biology and pathogenesis. Curr Top Microbiol Immunol. 1996;206:305–325. doi: 10.1007/978-3-642-85208-4_15. [DOI] [PubMed] [Google Scholar]
  15. Ren R. B., Costantini F., Gorgacz E. J., Lee J. J., Racaniello V. R. Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis. Cell. 1990 Oct 19;63(2):353–362. doi: 10.1016/0092-8674(90)90168-e. [DOI] [PubMed] [Google Scholar]
  16. SABIN A. B. Pathogenesis of poliomyelitis; reappraisal in the light of new data. Science. 1956 Jun 29;123(3209):1151–1157. doi: 10.1126/science.123.3209.1151. [DOI] [PubMed] [Google Scholar]
  17. Shepley M. P., Racaniello V. R. A monoclonal antibody that blocks poliovirus attachment recognizes the lymphocyte homing receptor CD44. J Virol. 1994 Mar;68(3):1301–1308. doi: 10.1128/jvi.68.3.1301-1308.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shepley M. P., Sherry B., Weiner H. L. Monoclonal antibody identification of a 100-kDa membrane protein in HeLa cells and human spinal cord involved in poliovirus attachment. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7743–7747. doi: 10.1073/pnas.85.20.7743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sweetser D. A., Birkenmeier E. H., Klisak I. J., Zollman S., Sparkes R. S., Mohandas T., Lusis A. J., Gordon J. I. The human and rodent intestinal fatty acid binding protein genes. A comparative analysis of their structure, expression, and linkage relationships. J Biol Chem. 1987 Nov 25;262(33):16060–16071. [PubMed] [Google Scholar]
  20. Sweetser D. A., Hauft S. M., Hoppe P. C., Birkenmeier E. H., Gordon J. I. Transgenic mice containing intestinal fatty acid-binding protein-human growth hormone fusion genes exhibit correct regional and cell-specific expression of the reporter gene in their small intestine. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9611–9615. doi: 10.1073/pnas.85.24.9611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zhou L., Dey C. R., Wert S. E., DuVall M. D., Frizzell R. A., Whitsett J. A. Correction of lethal intestinal defect in a mouse model of cystic fibrosis by human CFTR. Science. 1994 Dec 9;266(5191):1705–1708. doi: 10.1126/science.7527588. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES