Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Jul;71(7):4929–4937. doi: 10.1128/jvi.71.7.4929-4937.1997

Localized sequence heterogeneity in the long terminal repeats of in vivo isolates of equine infectious anemia virus.

W Maury 1, S Perryman 1, J L Oaks 1, B K Seid 1, T Crawford 1, T McGuire 1, S Carpenter 1
PMCID: PMC191723  PMID: 9188555

Abstract

The role of in vivo long terminal repeat (LTR) sequence variation of the lentivirus equine infectious anemia virus (EIAV) has not been explored. In this study, we investigated the heterogeneity found in the LTR sequences from seven EIAV-seropositive horses: three horses with clinical disease and four horses without any detectable signs of disease. LTR sequences were targeted in this study because the LTR U3 enhancer region of tissue culture-derived isolates has been identified as one of the few hypervariable regions of the EIAV genome. Furthermore, LTR variation may regulate EIAV expression in vivo. Both intra- and interanimal sequence variations were investigated. The intra-animal variation was low in seropositive, healthy horses (on average 0.44%). Intra-animal variation was consistently higher in clinically ill horses (0.99%), suggesting that greater numbers of quasispecies of EIAV are present when active virus replication is ongoing. Interanimal comparisons of consensus sequences generated from each horse demonstrated that the enhancer region is a hotspot of sequence variation in vivo. Thirty-seven of the 83 nucleotides that compose the U3 enhancer region were variable between the different in vivo-derived LTRs. The remainder of the LTR that was analyzed was more conserved, 8 of 195 nucleotide positions being variable. Results of electrophoretic mobility shift assays demonstrated that some nucleotide substitutions that occurred in the enhancer region eliminated or altered transcription factor binding motifs that are known to be important for EIAV LTR expression. These data suggested that the selective pressures exerted on the EIAV LTR enhancer sequences are different from those exerted on the remainder of the LTR. Our findings are consistent with the possibility that enhancer sequence hypervariability can alter expression of the virus in tissue macrophages and therefore contribute to clinical disease in infected horses.

Full Text

The Full Text of this article is available as a PDF (691.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ait-Khaled M., Emery V. C. Phylogenetic relationship between human immunodeficiency virus type 1 (HIV-1) long terminal repeat natural variants present in the lymph node and peripheral blood of three HIV-1-infected individuals. J Gen Virol. 1994 Jul;75(Pt 7):1615–1621. doi: 10.1099/0022-1317-75-7-1615. [DOI] [PubMed] [Google Scholar]
  2. Ait-Khaled M., McLaughlin J. E., Johnson M. A., Emery V. C. Distinct HIV-1 long terminal repeat quasispecies present in nervous tissues compared to that in lung, blood and lymphoid tissues of an AIDS patient. AIDS. 1995 Jul;9(7):675–683. doi: 10.1097/00002030-199507000-00002. [DOI] [PubMed] [Google Scholar]
  3. Bakhanashvili M., Hizi A. Fidelity of DNA synthesis exhibited in vitro by the reverse transcriptase of the lentivirus equine infectious anemia virus. Biochemistry. 1993 Jul 27;32(29):7559–7567. doi: 10.1021/bi00080a030. [DOI] [PubMed] [Google Scholar]
  4. Bakhanashvili M., Hizi A. Fidelity of the RNA-dependent DNA synthesis exhibited by the reverse transcriptases of human immunodeficiency virus types 1 and 2 and of murine leukemia virus: mispair extension frequencies. Biochemistry. 1992 Oct 6;31(39):9393–9398. doi: 10.1021/bi00154a010. [DOI] [PubMed] [Google Scholar]
  5. Balfe P., Simmonds P., Ludlam C. A., Bishop J. O., Brown A. J. Concurrent evolution of human immunodeficiency virus type 1 in patients infected from the same source: rate of sequence change and low frequency of inactivating mutations. J Virol. 1990 Dec;64(12):6221–6233. doi: 10.1128/jvi.64.12.6221-6233.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Borroto-Esoda K., Boone L. R. Equine infectious anemia virus and human immunodeficiency virus DNA synthesis in vitro: characterization of the endogenous reverse transcriptase reaction. J Virol. 1991 Apr;65(4):1952–1959. doi: 10.1128/jvi.65.4.1952-1959.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Breuer J., Douglas N. W., Goldman N., Daniels R. S. Human immunodeficiency virus type 2 (HIV-2) env gene analysis: prediction of glycoprotein epitopes important for heterotypic neutralization and evidence for three genotype clusters within the HIV-2a subtype. J Gen Virol. 1995 Feb;76(Pt 2):333–345. doi: 10.1099/0022-1317-76-2-333. [DOI] [PubMed] [Google Scholar]
  8. Carey N., Dalziel R. G. Sequence variation in the gp135 gene of Maedi visna virus strain EV1. Virus Genes. 1994 Mar;8(2):115–123. doi: 10.1007/BF01703610. [DOI] [PubMed] [Google Scholar]
  9. Carpenter S., Alexandersen S., Long M. J., Perryman S., Chesebro B. Identification of a hypervariable region in the long terminal repeat of equine infectious anemia virus. J Virol. 1991 Mar;65(3):1605–1610. doi: 10.1128/jvi.65.3.1605-1610.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Carpenter S., Chesebro B. Change in host cell tropism associated with in vitro replication of equine infectious anemia virus. J Virol. 1989 Jun;63(6):2492–2496. doi: 10.1128/jvi.63.6.2492-2496.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Carvalho M., Derse D. Physical and functional characterization of transcriptional control elements in the equine infectious anemia virus promoter. J Virol. 1993 Apr;67(4):2064–2074. doi: 10.1128/jvi.67.4.2064-2074.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Carvalho M., Kirkland M., Derse D. Protein interactions with DNA elements in variant equine infectious anemia virus enhancers and their impact on transcriptional activity. J Virol. 1993 Nov;67(11):6586–6595. doi: 10.1128/jvi.67.11.6586-6595.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cheevers W. P., McGuire T. C. Equine infectious anemia virus: immunopathogenesis and persistence. Rev Infect Dis. 1985 Jan-Feb;7(1):83–88. doi: 10.1093/clinids/7.1.83. [DOI] [PubMed] [Google Scholar]
  14. Clabough D. L., Gebhard D., Flaherty M. T., Whetter L. E., Perry S. T., Coggins L., Fuller F. J. Immune-mediated thrombocytopenia in horses infected with equine infectious anemia virus. J Virol. 1991 Nov;65(11):6242–6251. doi: 10.1128/jvi.65.11.6242-6251.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dignam J. D., Martin P. L., Shastry B. S., Roeder R. G. Eukaryotic gene transcription with purified components. Methods Enzymol. 1983;101:582–598. doi: 10.1016/0076-6879(83)01039-3. [DOI] [PubMed] [Google Scholar]
  16. Dorn P. L., Derse D. cis- and trans-acting regulation of gene expression of equine infectious anemia virus. J Virol. 1988 Sep;62(9):3522–3526. doi: 10.1128/jvi.62.9.3522-3526.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Eckert K. A., Kunkel T. A. DNA polymerase fidelity and the polymerase chain reaction. PCR Methods Appl. 1991 Aug;1(1):17–24. doi: 10.1101/gr.1.1.17. [DOI] [PubMed] [Google Scholar]
  18. Gao F., Yue L., White A. T., Pappas P. G., Barchue J., Hanson A. P., Greene B. M., Sharp P. M., Shaw G. M., Hahn B. H. Human infection by genetically diverse SIVSM-related HIV-2 in west Africa. Nature. 1992 Aug 6;358(6386):495–499. doi: 10.1038/358495a0. [DOI] [PubMed] [Google Scholar]
  19. Goodenow M., Huet T., Saurin W., Kwok S., Sninsky J., Wain-Hobson S. HIV-1 isolates are rapidly evolving quasispecies: evidence for viral mixtures and preferred nucleotide substitutions. J Acquir Immune Defic Syndr. 1989;2(4):344–352. [PubMed] [Google Scholar]
  20. Hengen P. N. Fidelity of DNA polymerases for PCR. Trends Biochem Sci. 1995 Aug;20(8):324–325. doi: 10.1016/s0968-0004(00)89060-x. [DOI] [PubMed] [Google Scholar]
  21. Holland J. J., De La Torre J. C., Steinhauer D. A. RNA virus populations as quasispecies. Curr Top Microbiol Immunol. 1992;176:1–20. doi: 10.1007/978-3-642-77011-1_1. [DOI] [PubMed] [Google Scholar]
  22. Hübner A., Kruhoffer M., Grosse F., Krauss G. Fidelity of human immunodeficiency virus type I reverse transcriptase in copying natural RNA. J Mol Biol. 1992 Feb 5;223(3):595–600. doi: 10.1016/0022-2836(92)90975-p. [DOI] [PubMed] [Google Scholar]
  23. Issel C. J., Coggins L. Equine infectious anemia: current knowledge. J Am Vet Med Assoc. 1979 Apr 1;174(7):727–733. [PubMed] [Google Scholar]
  24. Ji J., Loeb L. A. Fidelity of HIV-1 reverse transcriptase copying a hypervariable region of the HIV-1 env gene. Virology. 1994 Mar;199(2):323–330. doi: 10.1006/viro.1994.1130. [DOI] [PubMed] [Google Scholar]
  25. Kim C. H., Casey J. W. In vivo replicative status and envelope heterogeneity of equine infectious anemia virus in an inapparent carrier. J Virol. 1994 Apr;68(4):2777–2780. doi: 10.1128/jvi.68.4.2777-2780.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kodama T., Mori K., Kawahara T., Ringler D. J., Desrosiers R. C. Analysis of simian immunodeficiency virus sequence variation in tissues of rhesus macaques with simian AIDS. J Virol. 1993 Nov;67(11):6522–6534. doi: 10.1128/jvi.67.11.6522-6534.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kono Y. Viremia and immunological responses in horses infected with equine infectious anemia virus. Natl Inst Anim Health Q (Tokyo) 1969 Spring;9(1):1–9. [PubMed] [Google Scholar]
  28. Langemeier J. L., Cook S. J., Cook R. F., Rushlow K. E., Montelaro R. C., Issel C. J. Detection of equine infectious anemia viral RNA in plasma samples from recently infected and long-term inapparent carrier animals by PCR. J Clin Microbiol. 1996 Jun;34(6):1481–1487. doi: 10.1128/jcm.34.6.1481-1487.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lerner D. L., Wagaman P. C., Phillips T. R., Prospero-Garcia O., Henriksen S. J., Fox H. S., Bloom F. E., Elder J. H. Increased mutation frequency of feline immunodeficiency virus lacking functional deoxyuridine-triphosphatase. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7480–7484. doi: 10.1073/pnas.92.16.7480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Leroux C., Vuillermoz S., Mornex J. F., Greenland T. Genomic heterogeneity in the pol region of ovine lentiviruses obtained from bronchoalveolar cells of infected sheep from France. J Gen Virol. 1995 Jun;76(Pt 6):1533–1537. doi: 10.1099/0022-1317-76-6-1533. [DOI] [PubMed] [Google Scholar]
  31. Li Y., Golemis E., Hartley J. W., Hopkins N. Disease specificity of nondefective Friend and Moloney murine leukemia viruses is controlled by a small number of nucleotides. J Virol. 1987 Mar;61(3):693–700. doi: 10.1128/jvi.61.3.693-700.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lichtenstein D. L., Rushlow K. E., Cook R. F., Raabe M. L., Swardson C. J., Kociba G. J., Issel C. J., Montelaro R. C. Replication in vitro and in vivo of an equine infectious anemia virus mutant deficient in dUTPase activity. J Virol. 1995 May;69(5):2881–2888. doi: 10.1128/jvi.69.5.2881-2888.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Louwagie J., McCutchan F. E., Peeters M., Brennan T. P., Sanders-Buell E., Eddy G. A., van der Groen G., Fransen K., Gershy-Damet G. M., Deleys R. Phylogenetic analysis of gag genes from 70 international HIV-1 isolates provides evidence for multiple genotypes. AIDS. 1993 Jun;7(6):769–780. doi: 10.1097/00002030-199306000-00003. [DOI] [PubMed] [Google Scholar]
  34. Manns A., König H., Baier M., Kurth R., Grosse F. Fidelity of reverse transcriptase of the simian immunodeficiency virus from African green monkey. Nucleic Acids Res. 1991 Feb 11;19(3):533–537. doi: 10.1093/nar/19.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mansky L. M., Temin H. M. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol. 1995 Aug;69(8):5087–5094. doi: 10.1128/jvi.69.8.5087-5094.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Markham R. B., Yu X., Farzadegan H., Ray S. C., Vlahov D. Human immunodeficiency virus type 1 env and p17gag sequence variation in polymerase chain reaction-positive, seronegative injection drug users. J Infect Dis. 1995 Apr;171(4):797–804. doi: 10.1093/infdis/171.4.797. [DOI] [PubMed] [Google Scholar]
  37. Maury W. Monocyte maturation controls expression of equine infectious anemia virus. J Virol. 1994 Oct;68(10):6270–6279. doi: 10.1128/jvi.68.10.6270-6279.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Michael N. L., D'Arcy L., Ehrenberg P. K., Redfield R. R. Naturally occurring genotypes of the human immunodeficiency virus type 1 long terminal repeat display a wide range of basal and Tat-induced transcriptional activities. J Virol. 1994 May;68(5):3163–3174. doi: 10.1128/jvi.68.5.3163-3174.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Monken C. E., Wu B., Srinivasan A. High resolution analysis of HIV-1 quasispecies in the brain. AIDS. 1995 Apr;9(4):345–349. [PubMed] [Google Scholar]
  40. Murphy E., Korber B., Georges-Courbot M. C., You B., Pinter A., Cook D., Kieny M. P., Georges A., Mathiot C., Barré-Sinoussi F. Diversity of V3 region sequences of human immunodeficiency viruses type 1 from the central African Republic. AIDS Res Hum Retroviruses. 1993 Oct;9(10):997–1006. doi: 10.1089/aid.1993.9.997. [DOI] [PubMed] [Google Scholar]
  41. Nowak M. HIV mutation rate. Nature. 1990 Oct 11;347(6293):522–522. doi: 10.1038/347522a0. [DOI] [PubMed] [Google Scholar]
  42. O'Rourke K., Perryman L. E., McGuire T. C. Antiviral, anti-glycoprotein and neutralizing antibodies in foals with equine infectious anaemia virus. J Gen Virol. 1988 Mar;69(Pt 3):667–674. doi: 10.1099/0022-1317-69-3-667. [DOI] [PubMed] [Google Scholar]
  43. Patel P. H., Preston B. D. Marked infidelity of human immunodeficiency virus type 1 reverse transcriptase at RNA and DNA template ends. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):549–553. doi: 10.1073/pnas.91.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Payne S. L., Rausch J., Rushlow K., Montelaro R. C., Issel C., Flaherty M., Perry S., Sellon D., Fuller F. Characterization of infectious molecular clones of equine infectious anaemia virus. J Gen Virol. 1994 Feb;75(Pt 2):425–429. doi: 10.1099/0022-1317-75-2-425. [DOI] [PubMed] [Google Scholar]
  45. Perry S. T., Flaherty M. T., Kelley M. J., Clabough D. L., Tronick S. R., Coggins L., Whetter L., Lengel C. R., Fuller F. The surface envelope protein gene region of equine infectious anemia virus is not an important determinant of tropism in vitro. J Virol. 1992 Jul;66(7):4085–4097. doi: 10.1128/jvi.66.7.4085-4097.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Perryman L. E., O'Rourke K. I., McGuire T. C. Immune responses are required to terminate viremia in equine infectious anemia lentivirus infection. J Virol. 1988 Aug;62(8):3073–3076. doi: 10.1128/jvi.62.8.3073-3076.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Pyles R. B., Thompson R. L. Mutations in accessory DNA replicating functions alter the relative mutation frequency of herpes simplex virus type 1 strains in cultured murine cells. J Virol. 1994 Jul;68(7):4514–4524. doi: 10.1128/jvi.68.7.4514-4524.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sargan D. R., Bennet I. D., Cousens C., Roy D. J., Blacklaws B. A., Dalziel R. G., Watt N. J., McConnell I. Nucleotide sequence of EV1, a British isolate of maedi-visna virus. J Gen Virol. 1991 Aug;72(Pt 8):1893–1903. doi: 10.1099/0022-1317-72-8-1893. [DOI] [PubMed] [Google Scholar]
  49. Sellon D. C., Perry S. T., Coggins L., Fuller F. J. Wild-type equine infectious anemia virus replicates in vivo predominantly in tissue macrophages, not in peripheral blood monocytes. J Virol. 1992 Oct;66(10):5906–5913. doi: 10.1128/jvi.66.10.5906-5913.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sherman L., Yaniv A., Lichtman-Pleban H., Tronick S. R., Gazit A. Analysis of regulatory elements of the equine infectious anemia virus and caprine arthritis-encephalitis virus long terminal repeats. J Virol. 1989 Nov;63(11):4925–4931. doi: 10.1128/jvi.63.11.4925-4931.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Short M. K., Okenquist S. A., Lenz J. Correlation of leukemogenic potential of murine retroviruses with transcriptional tissue preference of the viral long terminal repeats. J Virol. 1987 Apr;61(4):1067–1072. doi: 10.1128/jvi.61.4.1067-1072.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Starcich B. R., Hahn B. H., Shaw G. M., McNeely P. D., Modrow S., Wolf H., Parks E. S., Parks W. P., Josephs S. F., Gallo R. C. Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS. Cell. 1986 Jun 6;45(5):637–648. doi: 10.1016/0092-8674(86)90778-6. [DOI] [PubMed] [Google Scholar]
  53. Steagall W. K., Robek M. D., Perry S. T., Fuller F. J., Payne S. L. Incorporation of uracil into viral DNA correlates with reduced replication of EIAV in macrophages. Virology. 1995 Jul 10;210(2):302–313. doi: 10.1006/viro.1995.1347. [DOI] [PubMed] [Google Scholar]
  54. Stephens R. M., Derse D., Rice N. R. Cloning and characterization of cDNAs encoding equine infectious anemia virus tat and putative Rev proteins. J Virol. 1990 Aug;64(8):3716–3725. doi: 10.1128/jvi.64.8.3716-3725.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Tao B., Fultz P. N. Molecular and biological analyses of quasispecies during evolution of a virulent simian immunodeficiency virus, SIVsmmPBj14. J Virol. 1995 Apr;69(4):2031–2037. doi: 10.1128/jvi.69.4.2031-2037.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Threadgill D. S., Steagall W. K., Flaherty M. T., Fuller F. J., Perry S. T., Rushlow K. E., Le Grice S. F., Payne S. L. Characterization of equine infectious anemia virus dUTPase: growth properties of a dUTPase-deficient mutant. J Virol. 1993 May;67(5):2592–2600. doi: 10.1128/jvi.67.5.2592-2600.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Walker J. M., Bowen W. D., Patrick S. L., Williams W. E., Mascarella S. W., Bai X., Carroll F. I. A comparison of (-)-deoxybenzomorphans devoid of opiate activity with their dextrorotatory phenolic counterparts suggests role of sigma 2 receptors in motor function. Eur J Pharmacol. 1993 Jan 26;231(1):61–68. doi: 10.1016/0014-2999(93)90684-a. [DOI] [PubMed] [Google Scholar]
  58. Wolfs T. F., Zwart G., Bakker M., Goudsmit J. HIV-1 genomic RNA diversification following sexual and parenteral virus transmission. Virology. 1992 Jul;189(1):103–110. doi: 10.1016/0042-6822(92)90685-i. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES