Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1987 Jan;90(1):139–146. doi: 10.1111/j.1476-5381.1987.tb16833.x

Triazolodiazepines: dissociation of their Paf (platelet activating factor) antagonistic and CNS activity.

J Casals-Stenzel, K H Weber
PMCID: PMC1917269  PMID: 2880622

Abstract

The relationship between the activity of thieno- or benzo-triazolodiazepines on platelet-activating factor (Paf)-induced effects and on the CNS (central nervous system) was studied in vitro and in vivo. Brotizolam and triazolam inhibited Paf-induced human platelet aggregation. The IC50 -values were 0.54 and 7.6 microM, respectively. This inhibitory effect was not blocked by the specific central-type benzodiazepine (BDZ) antagonist, Ro 15-1788, or the specific peripheral-type BDZ ligand, Ro 5-4846. These BDZ ligands also showed an inhibitory effect on Paf-induced platelet aggregation (IC50 = 200 and 560 microM, respectively). Ro 15-1788 or Ro 5-4846 in combination with brotizolam or triazolam enhanced the Paf inhibitory effect of these triazolodiazepines. In guinea-pigs, Ro 15-1788, 100 mg kg-1 p.o. and 10 mg kg-1 i.v. completely inhibited the hypnogenic effect of 10 mg kg-1 p.o. and 1 mg kg-1 i.v. of brotizolam, respectively. Similar results were obtained with triazolam but at higher doses. In anaesthetized guinea-pigs, a dose of 100 mg kg-1 p.o. of Ro 15-1788 did not inhibit bronchoconstriction and hypotension caused by Paf (30 ng kg-1 min-1 i.v.). The combination of brotizolam (10 mg kg-1 p.o.) or triazolam (200 mg kg-1 p.o.) with this BDZ antagonist (100 and 400 mg kg-1 p.o., respectively) did not affect the Paf inhibitory activity of these triazolodiazepines. These results show that the Paf antagonistic properties of the triazolodiazepine can be dissociated from their CNS activity. It is conceivable that compounds of this structural type could be the forerunners of a novel series of potent Paf antagonists.

Full text

PDF
139

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BORN G. V., CROSS M. J. THE AGGREGATION OF BLOOD PLATELETS. J Physiol. 1963 Aug;168:178–195. doi: 10.1113/jphysiol.1963.sp007185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Camussi G., Tetta C., Bussolino F., Caligaris Cappio F., Coda R., Masera C., Segoloni G. Mediators of immune-complex-induced aggregation of polymorphonuclear neutrophils. II. Platelet-activating factor as the effector substance of immune-induced aggregation. Int Arch Allergy Appl Immunol. 1981;64(1):25–41. doi: 10.1159/000232671. [DOI] [PubMed] [Google Scholar]
  3. Gehlert D. R., Yamamura H. I., Wamsley J. K. Autoradiographic localization of "peripheral-type" benzodiazepine binding sites in the rat brain, heart and kidney. Naunyn Schmiedebergs Arch Pharmacol. 1985 Feb;328(4):454–460. doi: 10.1007/BF00692915. [DOI] [PubMed] [Google Scholar]
  4. Hunkeler W., Möhler H., Pieri L., Polc P., Bonetti E. P., Cumin R., Schaffner R., Haefely W. Selective antagonists of benzodiazepines. Nature. 1981 Apr 9;290(5806):514–516. doi: 10.1038/290514a0. [DOI] [PubMed] [Google Scholar]
  5. Kornecki E., Ehrlich Y. H., Lenox R. H. Platelet-activating factor-induced aggregation of human platelets specifically inhibited by triazolobenzodiazepines. Science. 1984 Dec 21;226(4681):1454–1456. doi: 10.1126/science.6150550. [DOI] [PubMed] [Google Scholar]
  6. Marangos P. J., Patel J., Boulenger J. P., Clark-Rosenberg R. Characterization of peripheral-type benzodiazepine binding sites in brain using [3H]Ro 5-4864. Mol Pharmacol. 1982 Jul;22(1):26–32. [PubMed] [Google Scholar]
  7. Moingeon P., Bidart J. M., Alberici G. F., Bohuon C. Characterization of a peripheral-type benzodiazepine binding site on human circulating lymphocytes. Eur J Pharmacol. 1983 Aug 19;92(1-2):147–149. doi: 10.1016/0014-2999(83)90122-x. [DOI] [PubMed] [Google Scholar]
  8. Moingeon P., Dessaux J. J., Fellous R., Alberici G. F., Bidart J. M., Motté P., Bohuon C. Benzodiazepine receptors on human blood platelets. Life Sci. 1984 Nov 12;35(20):2003–2009. doi: 10.1016/0024-3205(84)90556-3. [DOI] [PubMed] [Google Scholar]
  9. Taniguchi T., Wang J. K., Spector S. Properties of [3H] diazepam binding to rat peritoneal mast cells. Life Sci. 1980 Jul 14;27(2):171–178. doi: 10.1016/0024-3205(80)90460-9. [DOI] [PubMed] [Google Scholar]
  10. Vargaftig B. B., Chignard M., Benveniste J., Lefort J., Wal F. Background and present status of research on platelet-activating factor (PAF-acether). Ann N Y Acad Sci. 1981;370:119–137. doi: 10.1111/j.1749-6632.1981.tb29727.x. [DOI] [PubMed] [Google Scholar]
  11. Vargaftig B. B., Chignard M., Benveniste J. Present concepts on the mechanisms of platelet aggregation. Biochem Pharmacol. 1981 Feb 15;30(4):263–271. doi: 10.1016/0006-2952(81)90052-6. [DOI] [PubMed] [Google Scholar]
  12. Vargaftig B. B., Lefort J., Chignard M., Benveniste J. Platelet-activating factor induces a platelet-dependent bronchoconstriction unrelated to the formation of prostaglandin derivatives. Eur J Pharmacol. 1980 Jul 25;65(2-3):185–192. doi: 10.1016/0014-2999(80)90391-x. [DOI] [PubMed] [Google Scholar]
  13. Wang J. K., Taniguchi T., Spector S. Properties of [3H]diazepam binding sites on rat blood platelets. Life Sci. 1980 Nov 17;27(20):1881–1888. doi: 10.1016/0024-3205(80)90434-8. [DOI] [PubMed] [Google Scholar]
  14. Zavala F., Haumont J., Lenfant M. Interaction of benzodiazepines with mouse macrophages. Eur J Pharmacol. 1984 Nov 27;106(3):561–566. doi: 10.1016/0014-2999(84)90059-1. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES