Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Jul;71(7):4990–4996. doi: 10.1128/jvi.71.7.4990-4996.1997

Two parvoviruses that cause different diseases in mink have different transcription patterns: transcription analysis of mink enteritis virus and Aleutian mink disease parvovirus in the same cell line.

T Storgaard 1, M Oleksiewicz 1, M E Bloom 1, B Ching 1, S Alexandersen 1
PMCID: PMC191731  PMID: 9188563

Abstract

The two parvoviruses of mink cause very different diseases. Mink enteritis virus (MEV) is associated with rapid, high-level viral replication and acute disease. In contrast, infection with Aleutian mink disease parvovirus (ADV) is associated with persistent, low-level viral replication and chronic severe immune dysregulation. In the present report, we have compared viral transcription in synchronized CRFK cells infected with either MEV or ADV using a nonradioactive RNase protection assay. The overall level of viral transcription was 20-fold higher in MEV- than in ADV-infected cells. Furthermore, MEV mRNA encoding structural proteins (MEV mRNA R3) was dominant throughout the infectious cycle, comprising approximately 80% of the total viral transcription products. In marked contrast, in ADV-infected cells, transcripts encoding nonstructural proteins (ADV mRNA R1 and R2) comprised more than 84% of the total transcripts at all times after infection, whereas ADV mRNA R3 comprised less than 16%. Thus, the ADV mRNA coding for structural proteins (ADV mRNA R3) was present at a level at least 100-fold lower than the corresponding MEV mRNA R3. These findings paralleled previous biochemical studies analyzing in vitro activities of the ADV and MEV promoters (J. Christensen, T. Storgaard, B. Viuff, B. Aasted, and S. Alexandersen, J. Virol. 67:1877-1886, 1993). The overall low levels of ADV mRNA and the paucity of the mRNA coding for ADV structural proteins may reflect an adaptation of the virus for low-level restricted infection.

Full Text

The Full Text of this article is available as a PDF (592.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aasted B., Alexandersen S., Hansen M. Treatment of neonatally Aleutian disease virus (ADV) infected mink kits with gammaglobulin containing antibodies to ADV reduces the death rate of mink kits. Acta Vet Scand. 1988;29(3-4):323–330. doi: 10.1186/BF03548625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alexandersen S. Acute interstitial pneumonia in mink kits: experimental reproduction of the disease. Vet Pathol. 1986 Sep;23(5):579–588. doi: 10.1177/030098588602300506. [DOI] [PubMed] [Google Scholar]
  3. Alexandersen S., Bloom M. E., Perryman S. Detailed transcription map of Aleutian mink disease parvovirus. J Virol. 1988 Oct;62(10):3684–3694. doi: 10.1128/jvi.62.10.3684-3694.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alexandersen S., Bloom M. E., Wolfinbarger J. Evidence of restricted viral replication in adult mink infected with Aleutian disease of mink parvovirus. J Virol. 1988 May;62(5):1495–1507. doi: 10.1128/jvi.62.5.1495-1507.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Alexandersen S., Bloom M. E., Wolfinbarger J., Race R. E. In situ molecular hybridization for detection of Aleutian mink disease parvovirus DNA by using strand-specific probes: identification of target cells for viral replication in cell cultures and in mink kits with virus-induced interstitial pneumonia. J Virol. 1987 Aug;61(8):2407–2419. doi: 10.1128/jvi.61.8.2407-2419.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Alexandersen S., Larsen S., Cohn A., Uttenthal A., Race R. E., Aasted B., Hansen M., Bloom M. E. Passive transfer of antiviral antibodies restricts replication of Aleutian mink disease parvovirus in vivo. J Virol. 1989 Jan;63(1):9–17. doi: 10.1128/jvi.63.1.9-17.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Alexandersen S., Storgaard T., Kamstrup N., Aasted B., Porter D. D. Pathogenesis of Aleutian mink disease parvovirus infection: effects of suppression of antibody response on viral mRNA levels and on development of acute disease. J Virol. 1994 Feb;68(2):738–749. doi: 10.1128/jvi.68.2.738-749.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Beckers T., Schmidt P., Hilgard P. Highly sensitive northern hybridization of rare mRNA using a positively charged nylon membrane. Biotechniques. 1994 Jun;16(6):1074–1078. [PubMed] [Google Scholar]
  9. Bloom M. E., Alexandersen S., Perryman S., Lechner D., Wolfinbarger J. B. Nucleotide sequence and genomic organization of Aleutian mink disease parvovirus (ADV): sequence comparisons between a nonpathogenic and a pathogenic strain of ADV. J Virol. 1988 Aug;62(8):2903–2915. doi: 10.1128/jvi.62.8.2903-2915.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bloom M. E., Race R. E., Wolfinbarger J. B. Analysis of Aleutian disease of mink parvovirus infection using strand-specific hybridization probes. Intervirology. 1987;27(2):102–111. doi: 10.1159/000149727. [DOI] [PubMed] [Google Scholar]
  11. Christensen J., Alexandersen S., Bloch B., Aasted B., Uttenthal A. Production of mink enteritis parvovirus empty capsids by expression in a baculovirus vector system: a recombinant vaccine for mink enteritis parvovirus in mink. J Gen Virol. 1994 Jan;75(Pt 1):149–155. doi: 10.1099/0022-1317-75-1-149. [DOI] [PubMed] [Google Scholar]
  12. Christensen J., Storgaard T., Viuff B., Aasted B., Alexandersen S. Comparison of promoter activity in Aleutian mink disease parvovirus, minute virus of mice, and canine parvovirus: possible role of weak promoters in the pathogenesis of Aleutian mink disease parvovirus infection. J Virol. 1993 Apr;67(4):1877–1886. doi: 10.1128/jvi.67.4.1877-1886.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Clemens K. E., Pintel D. J. The two transcription units of the autonomous parvovirus minute virus of mice are transcribed in a temporal order. J Virol. 1988 Apr;62(4):1448–1451. doi: 10.1128/jvi.62.4.1448-1451.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cotmore S. F., Tattersall P. The autonomously replicating parvoviruses of vertebrates. Adv Virus Res. 1987;33:91–174. doi: 10.1016/s0065-3527(08)60317-6. [DOI] [PubMed] [Google Scholar]
  15. Crandell R. A., Fabricant C. G., Nelson-Rees W. A. Development, characterization, and viral susceptibility of a feline (Felis catus) renal cell line (CRFK). In Vitro. 1973 Nov-Dec;9(3):176–185. doi: 10.1007/BF02618435. [DOI] [PubMed] [Google Scholar]
  16. Eklund C. M., Hadlow W. J., Kennedy R. C., Boyle C. C., Jackson T. A. Aleutian disease of mink: properties of the etiologic agent and the host responses. J Infect Dis. 1968 Dec;118(5):510–526. doi: 10.1093/infdis/118.5.510. [DOI] [PubMed] [Google Scholar]
  17. Firestein G. S., Gardner S. M., Roeder W. D. Quantitative molecular hybridization with unfractionated, solubilized cells using RNA probes and polyacrylamide gel electrophoresis. Anal Biochem. 1987 Dec;167(2):381–386. doi: 10.1016/0003-2697(87)90180-1. [DOI] [PubMed] [Google Scholar]
  18. Gottschalck E., Alexandersen S., Storgaard T., Bloom M. E., Aasted B. Sequence comparison of the non-structural genes of four different types of Aleutian mink disease parvovirus indicates an unusual degree of variability. Arch Virol. 1994;138(3-4):213–231. doi: 10.1007/BF01379127. [DOI] [PubMed] [Google Scholar]
  19. Gough N. M. Core and E antigen synthesis in rodent cells transformed with hepatitis B virus DNA is associated with greater than genome length viral messenger RNAs. J Mol Biol. 1983 Apr 25;165(4):683–699. doi: 10.1016/s0022-2836(83)80274-5. [DOI] [PubMed] [Google Scholar]
  20. HELMBOLDT C. F., JUNGHERR E. L. The pathology of Aleutian disease in mink. Am J Vet Res. 1958 Jan;19(70):212–222. [PubMed] [Google Scholar]
  21. HENSON J. B., LEADER R. W., GORHAM J. R. Hypergammaglobulinemia in mink. Proc Soc Exp Biol Med. 1961 Aug-Sep;107:919–920. doi: 10.3181/00379727-107-26795. [DOI] [PubMed] [Google Scholar]
  22. Haines D. S., Gillespie D. H. RNA abundance measured by a lysate RNase protection assay. Biotechniques. 1992 May;12(5):736–741. [PubMed] [Google Scholar]
  23. Henson J. B., Gorham J. R., Padgett G. A., Davis W. C. Pathogenesis of the glomerular lesions in aleutian disease of mink. Immunofluorescent studies. Arch Pathol. 1969 Jan;87(1):21–28. [PubMed] [Google Scholar]
  24. Ingram D. G., Cho H. J. Aleutian disease in mink: virology, immunology and pathogenesis. J Rheumatol. 1974 Mar;1(1):74–92. [PubMed] [Google Scholar]
  25. Kariatsumari T., Horiuchi M., Hama E., Yaguchi K., Ishigurio N., Goto H., Shinagawa M. Construction and nucleotide sequence analysis of an infectious DNA clone of the autonomous parvovirus, mink enteritis virus. J Gen Virol. 1991 Apr;72(Pt 4):867–875. doi: 10.1099/0022-1317-72-4-867. [DOI] [PubMed] [Google Scholar]
  26. Larsen S., Alexandersen S., Lund E., Have P., Hansen M. Acute interstitial pneumonitis caused by Aleutian disease virus in mink kits. Acta Pathol Microbiol Immunol Scand A. 1984 Sep;92(5):391–393. doi: 10.1111/j.1699-0463.1984.tb04419.x. [DOI] [PubMed] [Google Scholar]
  27. Li X., Rhode S. L., 3rd Nonstructural protein NS2 of parvovirus H-1 is required for efficient viral protein synthesis and virus production in rat cells in vivo and in vitro. Virology. 1991 Sep;184(1):117–130. doi: 10.1016/0042-6822(91)90828-y. [DOI] [PubMed] [Google Scholar]
  28. Li X., Rhode S. L., 3rd The parvovirus H-1 NS2 protein affects viral gene expression through sequences in the 3' untranslated region. Virology. 1993 May;194(1):10–19. doi: 10.1006/viro.1993.1229. [DOI] [PubMed] [Google Scholar]
  29. Martyn J. C., Davidson B. E., Studdert M. J. Nucleotide sequence of feline panleukopenia virus: comparison with canine parvovirus identifies host-specific differences. J Gen Virol. 1990 Nov;71(Pt 11):2747–2753. doi: 10.1099/0022-1317-71-11-2747. [DOI] [PubMed] [Google Scholar]
  30. Molitor T. W., Joo H. S., Collett M. S. Identification and characterization of a porcine parvovirus nonstructural polypeptide. J Virol. 1985 Sep;55(3):554–559. doi: 10.1128/jvi.55.3.554-559.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Naeger L. K., Salomé N., Pintel D. J. NS2 is required for efficient translation of viral mRNA in minute virus of mice-infected murine cells. J Virol. 1993 Feb;67(2):1034–1043. doi: 10.1128/jvi.67.2.1034-1043.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Oie K. L., Durrant G., Wolfinbarger J. B., Martin D., Costello F., Perryman S., Hogan D., Hadlow W. J., Bloom M. E. The relationship between capsid protein (VP2) sequence and pathogenicity of Aleutian mink disease parvovirus (ADV): a possible role for raccoons in the transmission of ADV infections. J Virol. 1996 Feb;70(2):852–861. doi: 10.1128/jvi.70.2.852-861.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Oleksiewicz M. B., Alexandersen S. S-phase-dependent cell cycle disturbances caused by Aleutian mink disease parvovirus. J Virol. 1997 Feb;71(2):1386–1396. doi: 10.1128/jvi.71.2.1386-1396.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Parrish C. R., Have P., Foreyt W. J., Evermann J. F., Senda M., Carmichael L. E. The global spread and replacement of canine parvovirus strains. J Gen Virol. 1988 May;69(Pt 5):1111–1116. doi: 10.1099/0022-1317-69-5-1111. [DOI] [PubMed] [Google Scholar]
  35. Parrish C. R., Leathers C. W., Pearson R., Gorham J. R. Comparisons of feline panleukopenia virus, canine parvovirus, raccoon parvovirus, and mink enteritis virus and their pathogenicity for mink and ferrets. Am J Vet Res. 1987 Oct;48(10):1429–1435. [PubMed] [Google Scholar]
  36. Parrish C. R. Mapping specific functions in the capsid structure of canine parvovirus and feline panleukopenia virus using infectious plasmid clones. Virology. 1991 Jul;183(1):195–205. doi: 10.1016/0042-6822(91)90132-u. [DOI] [PubMed] [Google Scholar]
  37. Porter D. D., Larsen A. E., Cox N. A., Porter H. G., Suffin S. C. Isolation of Aleutian disease virus of mink in cell culture. Intervirology. 1977;8(3):129–144. doi: 10.1159/000148888. [DOI] [PubMed] [Google Scholar]
  38. Porter D. D., Larsen A. E., Porter H. G. The pathogenesis of Aleutian disease of mink. 3. Immune complex arteritis. Am J Pathol. 1973 May;71(2):331–344. [PMC free article] [PubMed] [Google Scholar]
  39. Porter D. D., Larsen A. E., Porter H. G. The pathogenesis of Aleutian disease of mink. I. In vivo viral replication and the host antibody response to viral antigen. J Exp Med. 1969 Sep 1;130(3):575–593. doi: 10.1084/jem.130.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Reed A. P., Jones E. V., Miller T. J. Nucleotide sequence and genome organization of canine parvovirus. J Virol. 1988 Jan;62(1):266–276. doi: 10.1128/jvi.62.1.266-276.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Reynolds H. A. Pathological changes in virus enteritis of mink. Can J Comp Med. 1970 Apr;34(2):155–163. [PMC free article] [PubMed] [Google Scholar]
  42. Reynolds H. A. Some clinical and hematological features of virus enteritis of mink. Can J Comp Med. 1969 Apr;33(2):155–159. [PMC free article] [PubMed] [Google Scholar]
  43. Schoborg R. V., Pintel D. J. Accumulation of MVM gene products is differentially regulated by transcription initiation, RNA processing and protein stability. Virology. 1991 Mar;181(1):22–34. doi: 10.1016/0042-6822(91)90466-o. [DOI] [PubMed] [Google Scholar]
  44. Shimomura S., Wong S., Brown K. E., Komatsu N., Kajigaya S., Young N. S. Early and late gene expression in UT-7 cells infected with B19 parvovirus. Virology. 1993 May;194(1):149–156. doi: 10.1006/viro.1993.1244. [DOI] [PubMed] [Google Scholar]
  45. Siegl G., Bates R. C., Berns K. I., Carter B. J., Kelly D. C., Kurstak E., Tattersall P. Characteristics and taxonomy of Parvoviridae. Intervirology. 1985;23(2):61–73. doi: 10.1159/000149587. [DOI] [PubMed] [Google Scholar]
  46. Storgaard T., Christensen J., Aasted B., Alexandersen S. cis-acting sequences in the Aleutian mink disease parvovirus late promoter important for transcription: comparison to the canine parvovirus and minute virus of mice. J Virol. 1993 Apr;67(4):1887–1895. doi: 10.1128/jvi.67.4.1887-1895.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Thompson J., Gillespie D. Molecular hybridization with RNA probes in concentrated solutions of guanidine thiocyanate. Anal Biochem. 1987 Jun;163(2):281–291. doi: 10.1016/0003-2697(87)90225-9. [DOI] [PubMed] [Google Scholar]
  48. Truyen U., Gruenberg A., Chang S. F., Obermaier B., Veijalainen P., Parrish C. R. Evolution of the feline-subgroup parvoviruses and the control of canine host range in vivo. J Virol. 1995 Aug;69(8):4702–4710. doi: 10.1128/jvi.69.8.4702-4710.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Turnbow M. A., Garner C. W. Ribonuclease protection assay: use of biotinylated probes for the detection of two messenger RNAs. Biotechniques. 1993 Aug;15(2):267–270. [PubMed] [Google Scholar]
  50. Uttenthal A., Larsen S., Lund E., Bloom M. E., Storgård T., Alexandersen S. Analysis of experimental mink enteritis virus infection in mink: in situ hybridization, serology, and histopathology. J Virol. 1990 Jun;64(6):2768–2779. doi: 10.1128/jvi.64.6.2768-2779.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Viuff B., Aasted B., Alexandersen S. Role of alveolar type II cells and of surfactant-associated protein C mRNA levels in the pathogenesis of respiratory distress in mink kits infected with Aleutian mink disease parvovirus. J Virol. 1994 Apr;68(4):2720–2725. doi: 10.1128/jvi.68.4.2720-2725.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES