Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 Mar;99(3):548–552. doi: 10.1111/j.1476-5381.1990.tb12966.x

Effect of quinine on the release of catecholamines from bovine cultured chromaffin cells.

R Tang 1, M L Novas 1, M I Glavinovic 1, J M Trifaró 1
PMCID: PMC1917340  PMID: 2158846

Abstract

1. The effects of quinine on catecholamine release from cultured bovine chromaffin cells were studied. 2. Quinine (25-400 microM) produced a dose-related inhibition of catecholamine release in response to depolarizing concentrations (12.5-50 mM) of K+. 3. The inhibition of the secretory response to high K+ produced by quinine decreased with the increase in the extracellular concentration of Ca2+. 4. Stimulation of cultured chromaffin cells with 50 mM K+ produced a significant increase in Ca2+ influx. In the presence of 100 microM quinine a 54% inhibition of the K(+)-induced Ca2+ influx was observed. 5. Quinine treatment of chromaffin cell cultures produced a small but significant decrease in membrane resting potential and a less pronounced depolarization in response to 50 mM K+. 6. The results suggest that the inhibition of the K(+)-evoked release of catecholamines produced by quinine is at least partly due to a decrease in Ca2+ influx. Ca2+ influx is lower because quinine reduces the sensitivity of the membrane potential to changes in extracellular K+ but direct effects of quinine on Ca2+ channels cannot be excluded.

Full text

PDF
548

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguirre J., Pinto J. E., Trifaró J. M. Calcium movements during the release of catecholamines from the adrenal medulla: effects of methoxyverapamil and external cations. J Physiol. 1977 Jul;269(2):371–394. doi: 10.1113/jphysiol.1977.sp011907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atwater I., Dawson C. M., Ribalet B., Rojas E. Potassium permeability activated by intracellular calcium ion concentration in the pancreatic beta-cell. J Physiol. 1979 Mar;288:575–588. [PMC free article] [PubMed] [Google Scholar]
  3. Bourne G. W., Trifaró J. M. The gadolinium ion: a potent blocker of calcium channels and catecholamine release from cultured chromaffin cells. Neuroscience. 1982 Jul;7(7):1615–1622. doi: 10.1016/0306-4522(82)90019-7. [DOI] [PubMed] [Google Scholar]
  4. Ducouret P. The effect of quinidine on membrane electrical activity in frog auricular fibres studied by current and voltage clamp. Br J Pharmacol. 1976 Jun;57(2):163–184. doi: 10.1111/j.1476-5381.1976.tb07465.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Findlay I., Dunne M. J., Ullrich S., Wollheim C. B., Petersen O. H. Quinine inhibits Ca2+-independent K+ channels whereas tetraethylammonium inhibits Ca2+-activated K+ channels in insulin-secreting cells. FEBS Lett. 1985 Jun 3;185(1):4–8. doi: 10.1016/0014-5793(85)80729-8. [DOI] [PubMed] [Google Scholar]
  6. Fishman M. C., Spector I. Potassium current suppression by quinidine reveals additional calcium currents in neuroblastoma cells. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5245–5249. doi: 10.1073/pnas.78.8.5245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Glavinović M. I., Trifaró J. M. Quinine blockade of currents through Ca2+-activated K+ channels in bovine chromaffin cells. J Physiol. 1988 May;399:139–152. doi: 10.1113/jphysiol.1988.sp017072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  9. Hermann A., Gorman A. L. Action of quinidine on ionic currents of molluscan pacemaker neurons. J Gen Physiol. 1984 Jun;83(6):919–940. doi: 10.1085/jgp.83.6.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Iwatsuki N., Petersen O. H. Inhibition of Ca2+-activated K+ channels in pig pancreatic acinar cells by Ba2+, Ca2+, quinine and quinidine. Biochim Biophys Acta. 1985 Oct 10;819(2):249–257. doi: 10.1016/0005-2736(85)90180-4. [DOI] [PubMed] [Google Scholar]
  11. Katz B., Miledi R. Tetrodotoxin-resistant electric activity in presynaptic terminals. J Physiol. 1969 Aug;203(2):459–487. doi: 10.1113/jphysiol.1969.sp008875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kenigsberg R. L., Côté A., Trifaró J. M. Trifluoperazine, a calmodulin inhibitor, blocks secretion in cultured chromaffin cells at a step distal from calcium entry. Neuroscience. 1982;7(9):2277–2286. doi: 10.1016/0306-4522(82)90138-5. [DOI] [PubMed] [Google Scholar]
  13. Kenigsberg R. L., Trifaró J. M. Presence of a high affinity uptake system for catecholamines in cultured bovine adrenal chromaffin cells. Neuroscience. 1980;5(9):1547–1556. doi: 10.1016/0306-4522(80)90019-6. [DOI] [PubMed] [Google Scholar]
  14. Nawrath H. Action potential, membrane currents and force of contraction in mammalian heart muscle fibers treated with quinidine. J Pharmacol Exp Ther. 1981 Jan;216(1):176–182. [PubMed] [Google Scholar]
  15. Plant T. D., Standen N. B. Calcium current inactivation in identified neurones of Helix aspersa. J Physiol. 1981 Dec;321:273–285. doi: 10.1113/jphysiol.1981.sp013983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Savage A. O., Akinlalu C. A. Actions of quinine on the rat isolated rectum. Arch Int Pharmacodyn Ther. 1985 Jul;276(1):163–176. [PubMed] [Google Scholar]
  17. Trifaró J. M., Bourne G. W. Differential effects of concanavalin A on acetylcholine and potassium-evoked release of catecholamines from cultured chromaffin cells. Neuroscience. 1981;6(9):1823–1833. doi: 10.1016/0306-4522(81)90216-5. [DOI] [PubMed] [Google Scholar]
  18. Trifaró J. M., Lee R. W. Morphological characteristics and stimulus-secretion coupling in bovine adcrenal chromaffin cell cultures. Neuroscience. 1980;5(9):1533–1546. doi: 10.1016/0306-4522(80)90018-4. [DOI] [PubMed] [Google Scholar]
  19. Trifaró J. M., Poisner A. M., Douglas W. W. The fate of the chromaffin granule during catecholamine release from the adrenal medulla. I. Unchanged efflux of phospholipid and cholesterol. Biochem Pharmacol. 1967 Nov;16(11):2095–2100. doi: 10.1016/0006-2952(67)90006-8. [DOI] [PubMed] [Google Scholar]
  20. Trifaró J. M., Ulpian C., Preiksaitis H. Anti-myosin stains chromaffin cells. Experientia. 1978 Dec 15;34(12):1568–1571. doi: 10.1007/BF02034678. [DOI] [PubMed] [Google Scholar]
  21. Walden J., Speckmann E. J. Effects of quinine on membrane potential and membrane currents in identified neurons of Helix pomatia. Neurosci Lett. 1981 Dec 11;27(2):139–143. doi: 10.1016/0304-3940(81)90258-5. [DOI] [PubMed] [Google Scholar]
  22. Yoshida S., Fujimura K., Matsuda Y. Effects of quinidine and quinine on the excitability of pyramidal neurons in guinea-pig hippocampal slices. Pflugers Arch. 1986 May;406(5):544–546. doi: 10.1007/BF00583380. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES