Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 Feb;99(2):334–339. doi: 10.1111/j.1476-5381.1990.tb14704.x

Developmental changes in beta-adrenoceptors, muscarinic cholinoceptors and Ca2+ channels in rat ventricular muscles.

M Kojima 1, T Ishima 1, N Taniguchi 1, K Kimura 1, H Sada 1, N Sperelakis 1
PMCID: PMC1917400  PMID: 2158375

Abstract

1. In an attempt to explain the previous electrophysiological data on the ontogeny of beta-adrenergic and muscarinic cholinergic interactions on cardiac Ca2+ current, biochemical studies were performed on the ontogeny of beta-adrenoceptors, muscarinic cholinoceptors and Ca2+ channels in cardiac muscle of developing rats: 16-20 days old foetuses, 0-20 days old neonates, and 2-3 months old adults. 2. Developmental changes in cardiac beta-adrenoceptors, muscarinic cholinoceptors, and Ca2+ channels were determined with the use of specific radioligands, [3H]-dihydroalprenolol (DNA), [3H]-quinuclidinyl benzilate (QNB), and [3H]-nitrendipine (NTD), respectively. 3. The Bmax value (fmol mg-1 tissue) for [3H]-DNA binding started to increase on post-gestation day 20, reached almost its maximum level on neonatal day 6, kept almost the same level until neonatal day 20, and then decreased slightly to its adult level. 4. The Bmax value (fmol mg-1 tissue) for [3H]-QNB binding started to increase on post-gestation day 16, reached almost its maximum level on neonatal day 0, remained almost constant until neonatal day 15, and then decreased to its adult level. 5. The Bmax value (fmol mg-1 tissue) for [3H]-NTD binding increased with age between post-gestation day 18 and neonatal day 15, stayed almost constant until neonatal day 20, and then decreased to its adult level. 6. The Kd values for [3H]-DHA, [3H]-QNB, and [3H]-NTD bindings remained almost constant during the developmental period examined.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
334

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker S. P., Potter L. T. Cardiac beta-adrenoceptors during normal growth of male and female rats. Br J Pharmacol. 1980 Jan;68(1):65–70. doi: 10.1111/j.1476-5381.1980.tb10699.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cros G. H., Chanez P. O., Michel A., Boucard M., Serrano J. J. Post-natal evolution of rat cardiac beta-adrenoceptors. Life Sci. 1988;43(8):699–706. doi: 10.1016/0024-3205(88)90141-5. [DOI] [PubMed] [Google Scholar]
  3. Erman R. D., Yamamura H. I., Roeske W. R. The ontogeny of specific binding sites for the calcium channel antagonist, nitrendipine, in mouse heart and brain. Brain Res. 1983 Nov 14;278(1-2):327–331. doi: 10.1016/0006-8993(83)90265-2. [DOI] [PubMed] [Google Scholar]
  4. Ho A. K., Shang K., Duffield R. Calmodulin regulation of the cholinergic receptor in the rat heart during ontogeny and senescence. Mech Ageing Dev. 1986 Oct;36(2):143–154. doi: 10.1016/0047-6374(86)90015-1. [DOI] [PubMed] [Google Scholar]
  5. Kazazoglou T., Schmid A., Renaud J. F., Lazdunski M. Ontogenic appearance of Ca2+ channels characterized as binding sites for nitrendipine during development of nervous, skeletal and cardiac muscle systems in the rat. FEBS Lett. 1983 Nov 28;164(1):75–79. doi: 10.1016/0014-5793(83)80022-2. [DOI] [PubMed] [Google Scholar]
  6. Kojima M., Kitamura Y., Nomura Y., Sada H., Sperelakis N. Developmental changes in the levels of substrates for cholera toxin-catalyzed and pertussis toxin-catalyzed ADP-ribosylation in rat cardiac cell membranes. Jpn J Pharmacol. 1988 Sep;48(1):23–30. doi: 10.1254/jjp.48.23. [DOI] [PubMed] [Google Scholar]
  7. Kojima M., Sada H., Sperelakis N. Developmental changes in beta-adrenergic and cholinergic interactions on calcium-dependent slow action potentials in rat ventricular muscles. Br J Pharmacol. 1990 Feb;99(2):327–333. doi: 10.1111/j.1476-5381.1990.tb14703.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Lau C., Slotkin T. A. Maturation of sympathetic neurotransmission in the rat heart. VIII. Slowed development of noradrenergic synapses resulting from hypothyroidism. J Pharmacol Exp Ther. 1982 Mar;220(3):629–636. [PubMed] [Google Scholar]
  10. Nedoma J., Slavíková J., Tucek S. Muscarinic acetylcholine receptors in the heart of rats before and after birth. Pflugers Arch. 1986 Jan;406(1):45–50. doi: 10.1007/BF00582951. [DOI] [PubMed] [Google Scholar]
  11. Noguchi A., Whitsett J. A., Dickman L. Ontogeny of myocardial alpha 1-adrenergic receptor in the rat. Dev Pharmacol Ther. 1981;3(3):179–188. doi: 10.1159/000457439. [DOI] [PubMed] [Google Scholar]
  12. Slotkin T. A., Seidler F. J., Haim K., Cameron A. M., Antolick L., Lau C. Neonatal central catecholaminergic lesions with intracisternal 6-hydroxydopamine: effects on development of presynaptic and postsynaptic components of peripheral sympathetic pathways and on the ornithine decarboxylase/polyamine system in heart, lung and kidney. J Pharmacol Exp Ther. 1988 Dec;247(3):975–982. [PubMed] [Google Scholar]
  13. Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
  14. Whitsett J. A., Darovec-Beckerman C. Developmental aspects of beta-adrenergic receptors and catecholamine-sensitive adenylate cyclase in rat myocardium. Pediatr Res. 1981 Oct;15(10):1363–1369. doi: 10.1203/00006450-198110000-00013. [DOI] [PubMed] [Google Scholar]
  15. Yamada S., Ishima T., Tomita T., Hayashi M., Okada T., Hayashi E. Alterations in cardiac alpha and beta adrenoceptors during the development of spontaneous hypertension. J Pharmacol Exp Ther. 1984 Feb;228(2):454–460. [PubMed] [Google Scholar]
  16. Yamamura H. I., Snyder S. H. Muscarinic cholinergic binding in rat brain. Proc Natl Acad Sci U S A. 1974 May;71(5):1725–1729. doi: 10.1073/pnas.71.5.1725. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES