Abstract
1. The purpose of the present study was to determine the myocardial cytoprotective efficacy of azapropazone (AZA) and its potential site of action on neutrophil infiltration into reperfused/ischaemic myocardium with or without in vivo activation of neutrophils in rabbits. 2. AZA, 100 mg kg-1, was administered i.v. 10 min after occlusion of the left circumflex (LCX) artery in rabbits with and without pretreatment with phorbol myristate acetate ester (PMA). The LCX occlusion was then released at 10 min after AZA administration. Haemodynamic parameters (heart rate, LV pressure, mean arterial blood pressure and dp/dt) were monitored throughout the experiment. After 60 min reperfusion, the area at risk was delineated and the heart was then excised and divided into epi- and endocardial pieces for analysis of myeloperoxidase activity. 3. AZA inhibited neutrophil infiltration into the reperfused/ischaemic rabbit myocardium with and without PMA treatment. The inhibition of neutrophil infiltration was more apparent in the epicardium than in the endocardium. Additionally, AZA inhibited to a similar extent the in vivo PMA-stimulated neutrophil migration into the epicardium and endocardium area at risk. AZA had no significant effect on the haemodynamic parameters as compared to control. 4. AZA administered in an anaesthetized rabbit model of LCX occlusion/reperfusion resulted in the reduction of infarct size. 5. It is concluded that AZA has significant inhibitory effects on neutrophil migration which might contribute to its myocardial cytoprotective effect.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Khalidi U. A., Chaglassian T. H. The species distribution of xanthine oxidase. Biochem J. 1965 Oct;97(1):318–320. doi: 10.1042/bj0970318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradley P. P., Priebat D. A., Christensen R. D., Rothstein G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol. 1982 Mar;78(3):206–209. doi: 10.1111/1523-1747.ep12506462. [DOI] [PubMed] [Google Scholar]
- Braunwald E., Kloner R. A. Myocardial reperfusion: a double-edged sword? J Clin Invest. 1985 Nov;76(5):1713–1719. doi: 10.1172/JCI112160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cobbe S. M., Poole-Wilson P. A. The time of onset and severity of acidosis in myocardial ischaemia. J Mol Cell Cardiol. 1980 Aug;12(8):745–760. doi: 10.1016/0022-2828(80)90077-2. [DOI] [PubMed] [Google Scholar]
- DeBoer L. W., Strauss H. W., Kloner R. A., Rude R. E., Davis R. F., Maroko P. R., Braunwald E. Autoradiographic method for measuring the ischemic myocardium at risk: effects of verapamil on infarct size aftr experimental coronary artery occlusion. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6119–6123. doi: 10.1073/pnas.77.10.6119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eddy L. J., Stewart J. R., Jones H. P., Engerson T. D., McCord J. M., Downey J. M. Free radical-producing enzyme, xanthine oxidase, is undetectable in human hearts. Am J Physiol. 1987 Sep;253(3 Pt 2):H709–H711. doi: 10.1152/ajpheart.1987.253.3.H709. [DOI] [PubMed] [Google Scholar]
- Farber J. L., Chien K. R., Mittnacht S., Jr Myocardial ischemia: the pathogenesis of irreversible cell injury in ischemia. Am J Pathol. 1981 Feb;102(2):271–281. [PMC free article] [PubMed] [Google Scholar]
- Freeman B. A., Crapo J. D. Biology of disease: free radicals and tissue injury. Lab Invest. 1982 Nov;47(5):412–426. [PubMed] [Google Scholar]
- Hess M. L., Manson N. H. Molecular oxygen: friend and foe. The role of the oxygen free radical system in the calcium paradox, the oxygen paradox and ischemia/reperfusion injury. J Mol Cell Cardiol. 1984 Nov;16(11):969–985. doi: 10.1016/s0022-2828(84)80011-5. [DOI] [PubMed] [Google Scholar]
- Heyndrickx G. R., Millard R. W., McRitchie R. J., Maroko P. R., Vatner S. F. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest. 1975 Oct;56(4):978–985. doi: 10.1172/JCI108178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jahn U., Thiele K. In vitro inhibition of xanthine oxidase by azapropazone and 8-hydroxy-azapropazone. Arzneimittelforschung. 1988 Apr;38(4):507–508. [PubMed] [Google Scholar]
- Lucchesi B. R., Mullane K. M. Leukocytes and ischemia-induced myocardial injury. Annu Rev Pharmacol Toxicol. 1986;26:201–224. doi: 10.1146/annurev.pa.26.040186.001221. [DOI] [PubMed] [Google Scholar]
- Mackin W. M., Rakich S. M., Marshall C. L. Inhibition of rat neutrophil functional responses by azapropazone, an anti-gout drug. Biochem Pharmacol. 1986 Mar 15;35(6):917–922. doi: 10.1016/0006-2952(86)90077-8. [DOI] [PubMed] [Google Scholar]
- McCord J. M. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985 Jan 17;312(3):159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
- Montor S. G., Thoolen M. J., Mackin W. M., Timmermans P. B. Effect of azapropazone and allopurinol on myocardial infarct size in rats. Eur J Pharmacol. 1987 Aug 11;140(2):203–207. doi: 10.1016/0014-2999(87)90806-5. [DOI] [PubMed] [Google Scholar]
- Mousa S. A., Cooney J. M., Thoolen M. J., Timmermans P. B. Myocardial cytoprotective efficacy of azapropazone in a canine heart model of regional ischemia and reperfusion. J Cardiovasc Pharmacol. 1989 Oct;14(4):542–548. doi: 10.1097/00005344-198910000-00005. [DOI] [PubMed] [Google Scholar]
- Mullane K. M., Kraemer R., Smith B. Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemic myocardium. J Pharmacol Methods. 1985 Nov;14(3):157–167. doi: 10.1016/0160-5402(85)90029-4. [DOI] [PubMed] [Google Scholar]
- Reimer K. A., Hill M. L., Jennings R. B. Prolonged depletion of ATP and of the adenine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs. J Mol Cell Cardiol. 1981 Feb;13(2):229–239. doi: 10.1016/0022-2828(81)90219-4. [DOI] [PubMed] [Google Scholar]
- Rowe G. T., Eaton L. R., Hess M. L. Neutrophil-derived, oxygen free radical-mediated cardiovascular dysfunction. J Mol Cell Cardiol. 1984 Nov;16(11):1075–1079. doi: 10.1016/s0022-2828(84)80020-6. [DOI] [PubMed] [Google Scholar]
