Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 Jun;100(2):324–328. doi: 10.1111/j.1476-5381.1990.tb15803.x

Development of tolerance to the effects of vigabatrin (gamma-vinyl-GABA) on GABA release from rat cerebral cortex, spinal cord and retina.

M J Neal 1, M A Shah 1
PMCID: PMC1917440  PMID: 2379037

Abstract

1. The effects of acute and chronic vigabatrin (gamma-vinyl-GABA) (GVG) administration on gamma-aminobutyric acid (GABA) levels and release in rat cortical slices, spinal cord slices and retinas were studied. 2. GVG (250 mgkg-1 i.p.) administered to rats 18 h before death (acute administration) produced an almost 3 fold increase in GABA levels of the cortex and spinal cord and a 6 fold increase in retinal GABA. The levels of glutamate, aspartate, glycine and taurine were unaffected. 3. When GVG (250 mgkg-1 i.p.) was administered daily for 17 days (chronic administration) a similar (almost 3 fold) increase in cortical GABA occurred but the increases in spinal and retinal GABA were reduced by approximately 40%. 4. Acute administration of GVG strikingly increased the potassium-evoked release (KCl 50 mM) of GABA from all three tissues. This enhanced evoked release was reduced by about 50% in tissues taken from rats that had been chronically treated with GVG. 5. Acute administration of GVG reduced GABA-transaminase (GABA-T) activity by approximately 80% in cortex and cord and by 98% in the retina. Following the chronic administration of GVG, there was a trend for GABA-T activities to recover (significant only in cortex). Acute administration of GVG had no effect on glutamic acid decarboxylase (GAD) activity in cortex or spinal cord. However, chronic treatment resulted in significant decreases in GAD activity in both the cortex and cord (35% and 50% reduction respectively).(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
324

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdul-Ghani A. S., Coutinho-Netto J., Bradford H. F. The action of gamma-vinyl-GABA and gamma-acetylenic-GABA on the resting and stimulated release of GABA in vivo. Brain Res. 1980 Jun 9;191(2):471–481. doi: 10.1016/0006-8993(80)91295-0. [DOI] [PubMed] [Google Scholar]
  2. Abdul-Ghani A. S., Coutinho-Netto J., Druce D., Bradford H. F. Effects of anticonvulsants on the in vivo and in vitro release of GABA. Biochem Pharmacol. 1981 Feb 15;30(4):363–368. doi: 10.1016/0006-2952(81)90067-8. [DOI] [PubMed] [Google Scholar]
  3. Cunningham J., Neal M. J. On the mechanism by which veratridine causes a calcium-independent release of gamma-aminobutyric acid from brain slices. Br J Pharmacol. 1981 Jul;73(3):655–667. doi: 10.1111/j.1476-5381.1981.tb16801.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fletcher A., Fowler L. J. gamma-Aminobutyric acid metabolism in rat brain following chronic oral administration of ethanolamine O-sulphate. Biochem Pharmacol. 1980 Jun 1;29(11):1451–1454. doi: 10.1016/0006-2952(80)90592-4. [DOI] [PubMed] [Google Scholar]
  5. Gram L., Larsson O. M., Johnsen A. H., Schousboe A. Effects of valproate, vigabatrin and aminooxyacetic acid on release of endogenous and exogenous GABA from cultured neurons. Epilepsy Res. 1988 Mar-Apr;2(2):87–95. doi: 10.1016/0920-1211(88)90024-1. [DOI] [PubMed] [Google Scholar]
  6. Gram L., Lyon B. B., Dam M. Gamma-vinyl-GABA: a single-blind trial in patients with epilepsy. Acta Neurol Scand. 1983 Jul;68(1):34–39. doi: 10.1111/j.1600-0404.1983.tb04812.x. [DOI] [PubMed] [Google Scholar]
  7. Grove J., Schechter P. J., Tell G., Koch-Weser J., Sjoerdsma A., Warter J. M., Marescaux C., Rumbach L. Increased gamma-aminobutyric acid (GABA), homocarnosine and beta-alanine in cerebrospinal fluid of patients treated with gamma-vinyl GABA (4-amino-hex-5-enoic acid). Life Sci. 1981 May 21;28(21):2431–2439. doi: 10.1016/0024-3205(81)90511-7. [DOI] [PubMed] [Google Scholar]
  8. Hopkin J., Neal M. J. Effect of electrical stimulation and high potassium concentrations on the effux of (14C) glycine from slices of spinal cord. Br J Pharmacol. 1971 Jun;42(2):215–223. doi: 10.1111/j.1476-5381.1971.tb07102.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Iadarola M. J., Gale K. Substantia nigra: site of anticonvulsant activity mediated by gamma-aminobutyric acid. Science. 1982 Dec 17;218(4578):1237–1240. doi: 10.1126/science.7146907. [DOI] [PubMed] [Google Scholar]
  10. LOWE I. P., ROBINS E., EYERMAN G. S. The fluorometric measurement of glutamic decarboxylase and its distribution in brain. J Neurochem. 1958 Oct;3(1):8–18. doi: 10.1111/j.1471-4159.1958.tb12604.x. [DOI] [PubMed] [Google Scholar]
  11. Lippert B., Metcalf B. W., Jung M. J., Casara P. 4-amino-hex-5-enoic acid, a selective catalytic inhibitor of 4-aminobutyric-acid aminotransferase in mammalian brain. Eur J Biochem. 1977 Apr 15;74(3):441–445. doi: 10.1111/j.1432-1033.1977.tb11410.x. [DOI] [PubMed] [Google Scholar]
  12. Löscher W. Anticonvulsant and biochemical effects of inhibitors of GABA aminotransferase and valproic acid during subchronic treatment in mice. Biochem Pharmacol. 1982 Mar 1;31(5):837–842. doi: 10.1016/0006-2952(82)90471-3. [DOI] [PubMed] [Google Scholar]
  13. Löscher W. Development of tolerance to the anticonvulsant effect of GABAmimetic drugs in genetically epilepsy-prone gerbils. Pharmacol Biochem Behav. 1986 Apr;24(4):1007–1013. doi: 10.1016/0091-3057(86)90449-1. [DOI] [PubMed] [Google Scholar]
  14. Löscher W., Frey H. H. One to three day dose intervals during subchronic treatment of epileptic gerbils with gamma-vinyl GABA: anticonvulsant efficacy and alterations in regional brain GABA levels. Eur J Pharmacol. 1987 Nov 17;143(3):335–342. doi: 10.1016/0014-2999(87)90457-2. [DOI] [PubMed] [Google Scholar]
  15. Meldrum B., Horton R. Blockade of epileptic responses in the photosensitive baboon, Papio papio, by two irreversible inhibitors of GABA-transaminase, gamma-acetylenic GABA (4-amino-hex-5-ynoic acid) and gamma-vinyl GABA (4-amino-hex-5-enoic acid). Psychopharmacology (Berl) 1978 Sep 15;59(1):47–50. doi: 10.1007/BF00428029. [DOI] [PubMed] [Google Scholar]
  16. Neal M. J., Cunningham J. R., Shah M. A., Yazulla S. Immunocytochemical evidence that vigabatrin in rats causes GABA accumulation in glial cells of the retina. Neurosci Lett. 1989 Mar 13;98(1):29–32. doi: 10.1016/0304-3940(89)90368-6. [DOI] [PubMed] [Google Scholar]
  17. Neal M. J., Iversen L. L. Subcellular distribution of endogenous and (3H) gamma-aminobutyric acid in rat cerebral cortex. J Neurochem. 1969 Aug;16(8):1245–1252. doi: 10.1111/j.1471-4159.1969.tb05972.x. [DOI] [PubMed] [Google Scholar]
  18. Neal M. J., Shah M. A. Baclofen and phaclofen modulate GABA release from slices of rat cerebral cortex and spinal cord but not from retina. Br J Pharmacol. 1989 Sep;98(1):105–112. doi: 10.1111/j.1476-5381.1989.tb16869.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Remy C., Beaumont D. Efficacy and safety of vigabatrin in the long-term treatment of refractory epilepsy. Br J Clin Pharmacol. 1989;27 (Suppl 1):125S–129S. doi: 10.1111/j.1365-2125.1989.tb03473.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rimmer E. M., Richens A. Double-blind study of gamma-vinyl GABA in patients with refractory epilepsy. Lancet. 1984 Jan 28;1(8370):189–190. doi: 10.1016/s0140-6736(84)92112-3. [DOI] [PubMed] [Google Scholar]
  21. SALVADOR R. A., ALBERS R. W. The distribution of glutamic-gamma-aminobutric transaminase in the nervous system of the rhesus monkey. J Biol Chem. 1959 Apr;234(4):922–925. [PubMed] [Google Scholar]
  22. Schechter P. J., Hanke N. F., Grove J., Huebert N., Sjoerdsma A. Biochemical and clinical effects of gamma-vinyl GABA in patients with epilepsy. Neurology. 1984 Feb;34(2):182–186. doi: 10.1212/wnl.34.2.182. [DOI] [PubMed] [Google Scholar]
  23. Yazulla S., Cunningham J., Neal M. Stimulated release of endogenous GABA and glycine from the goldfish retina. Brain Res. 1985 Oct 21;345(2):384–388. doi: 10.1016/0006-8993(85)91022-4. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES