Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 May;100(1):41–48. doi: 10.1111/j.1476-5381.1990.tb12049.x

Actions of second messengers synthesized by various spasmogenic agents and their relation to mechanical responses in dog tracheal smooth muscle.

H Katsuyama 1, S Suzuki 1, E Nishiye 1
PMCID: PMC1917446  PMID: 2164860

Abstract

1. The effects of the spasmogenic agents, carbachol (CCh), histamine, 5-hydroxytryptamine (5-HT) and 9,11-epithio-11,12-methano-thromboxane A2 (STA2) were investigated on smooth muscle tissues of the dog trachea. 2. CCh (10 microM) produced a larger contraction than high K (128 mM), 10 microM histamine, 5-HT or STA2. Histamine and 5-HT produced the same amplitude of contraction as each other. In Ca-free solution containing 0.2 mM EGTA, only a phasic contraction was evoked by the above agents (except for K which induced no contraction at all). 3. In skinned muscle tissues, the maximum amplitude of contraction that could be induced by Ca (10 microM) was slightly larger than the maximum CCh-induced contraction (also at 10 microM) evoked in intact muscle tissues. Caffeine and inositol 1,4,5-trisphosphate (IP3) both produced contraction. 4. CCh, histamine and 5-HT (10 microM) produced a sustained contraction for over 30 min and also increased phosphorylation of the 20 kD protein of myosin light chain (MLC20) for over 30 min with no attenuation. Greater concentrations of the above agents caused more phosphorylation of MLC20. 5. CCh (above 1 nM), histamine (above 10 nM) and 5-HT (above 100 nM) increased the amount of IP3, in a concentration-dependent manner. Synthesis of IP3 induced by the above agents reached its peak value within 30 s and lasted for about 3 min. The potencies for the synthesis of IP3 were in the following order: CCh greater than histamine greater than 5-HT greater than STA2.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chand N., Eyre P. Classification and biological distribution of histamine receptor sub-types. Agents Actions. 1975 Oct;5(4):277–295. doi: 10.1007/BF02205232. [DOI] [PubMed] [Google Scholar]
  2. Chatterjee M., Murphy R. A. Calcium-dependent stress maintenance without myosin phosphorylation in skinned smooth muscle. Science. 1983 Jul 29;221(4609):464–466. doi: 10.1126/science.6867722. [DOI] [PubMed] [Google Scholar]
  3. Chatterjee M., Tejada M. Phorbol ester-induced contraction in chemically skinned vascular smooth muscle. Am J Physiol. 1986 Sep;251(3 Pt 1):C356–C361. doi: 10.1152/ajpcell.1986.251.3.C356. [DOI] [PubMed] [Google Scholar]
  4. Chinkers M., Garbers D. L., Chang M. S., Lowe D. G., Chin H. M., Goeddel D. V., Schulz S. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature. 1989 Mar 2;338(6210):78–83. doi: 10.1038/338078a0. [DOI] [PubMed] [Google Scholar]
  5. Driska S. P., Aksoy M. O., Murphy R. A. Myosin light chain phosphorylation associated with contraction in arterial smooth muscle. Am J Physiol. 1981 May;240(5):C222–C233. doi: 10.1152/ajpcell.1981.240.5.C222. [DOI] [PubMed] [Google Scholar]
  6. Duncan P. G., Brink C., Adolphson R. L., Douglas J. S. Cyclic nucleotides and contraction/relaxation in airway muscle: H1 and H2 agonists and antagonists. J Pharmacol Exp Ther. 1980 Nov;215(2):434–442. [PubMed] [Google Scholar]
  7. Eggermont J. A., Vrolix M., Raeymaekers L., Wuytack F., Casteels R. Ca2+-transport ATPases of vascular smooth muscle. Circ Res. 1988 Feb;62(2):266–278. doi: 10.1161/01.res.62.2.266. [DOI] [PubMed] [Google Scholar]
  8. Felbel J., Trockur B., Ecker T., Landgraf W., Hofmann F. Regulation of cytosolic calcium by cAMP and cGMP in freshly isolated smooth muscle cells from bovine trachea. J Biol Chem. 1988 Nov 15;263(32):16764–16771. [PubMed] [Google Scholar]
  9. Fujiwara T., Itoh T., Kubota Y., Kuriyama H. Effects of guanosine nucleotides on skinned smooth muscle tissue of the rabbit mesenteric artery. J Physiol. 1989 Jan;408:535–547. doi: 10.1113/jphysiol.1989.sp017474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fujiwara T., Itoh T., Kuriyama H. Regional differences in the mechanical properties of rabbit airway smooth muscle. Br J Pharmacol. 1988 Jun;94(2):389–396. doi: 10.1111/j.1476-5381.1988.tb11541.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gerthoffer W. T., Murphy R. A. Myosin phosphorylation and regulation of cross-bridge cycle in tracheal smooth muscle. Am J Physiol. 1983 Mar;244(3):C182–C187. doi: 10.1152/ajpcell.1983.244.3.C182. [DOI] [PubMed] [Google Scholar]
  12. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  13. Hashimoto T., Hirata M., Ito Y. A role for inositol 1,4,5-trisphosphate in the initiation of agonist-induced contractions of dog tracheal smooth muscle. Br J Pharmacol. 1985 Sep;86(1):191–199. doi: 10.1111/j.1476-5381.1985.tb09449.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Himpens B., Somlyo A. P. Free-calcium and force transients during depolarization and pharmacomechanical coupling in guinea-pig smooth muscle. J Physiol. 1988 Jan;395:507–530. doi: 10.1113/jphysiol.1988.sp016932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ito Y., Tajima K. Dual effects of catecholamines on pre- and post-junctional membranes in the dog trachea. Br J Pharmacol. 1982 Mar;75(3):433–440. doi: 10.1111/j.1476-5381.1982.tb09158.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Itoh T., Kanmura Y., Kuriyama H., Sasaguri T. Nitroglycerine- and isoprenaline-induced vasodilatation: assessment from the actions of cyclic nucleotides. Br J Pharmacol. 1985 Feb;84(2):393–406. doi: 10.1111/j.1476-5381.1985.tb12923.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Itoh T., Kanmura Y., Kuriyama H., Sumimoto K. A phorbol ester has dual actions on the mechanical response in the rabbit mesenteric and porcine coronary arteries. J Physiol. 1986 Jun;375:515–534. doi: 10.1113/jphysiol.1986.sp016131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Itoh T., Kuriyama H., Suzuki H. Excitation--contraction coupling in smooth muscle cells of the guinea-pig mesenteric artery. J Physiol. 1981 Dec;321:513–535. doi: 10.1113/jphysiol.1981.sp014000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kamm K. E., Stull J. T. Activation of smooth muscle contraction: relation between myosin phosphorylation and stiffness. Science. 1986 Apr 4;232(4746):80–82. doi: 10.1126/science.3754063. [DOI] [PubMed] [Google Scholar]
  20. Kamm K. E., Stull J. T. Airway smooth muscle and disease workshop: contractile mechanisms. Am Rev Respir Dis. 1987 Oct;136(4 Pt 2):S12–S14. doi: 10.1164/ajrccm/136.4_Pt_2.S12. [DOI] [PubMed] [Google Scholar]
  21. Kirkpatrick C. T. Excitation and contraction in bovine tracheal smooth muscle. J Physiol. 1975 Jan;244(2):263–281. doi: 10.1113/jphysiol.1975.sp010796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kobayashi S., Kanaide H., Nakamura M. Cytosolic-free calcium transients in cultured vascular smooth muscle cells: microfluorometric measurements. Science. 1985 Aug 9;229(4713):553–556. doi: 10.1126/science.3927484. [DOI] [PubMed] [Google Scholar]
  23. Kotlikoff M. I., Murray R. K., Reynolds E. E. Histamine-induced calcium release and phorbol antagonism in cultured airway smooth muscle cells. Am J Physiol. 1987 Oct;253(4 Pt 1):C561–C566. doi: 10.1152/ajpcell.1987.253.4.C561. [DOI] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Lückhoff A. Measuring cytosolic free calcium concentration in endothelial cells with indo-1: the pitfall of using the ratio of two fluorescence intensities recorded at different wavelengths. Cell Calcium. 1986 Aug;7(4):233–248. doi: 10.1016/0143-4160(86)90003-5. [DOI] [PubMed] [Google Scholar]
  26. Nakagawa H., Oka M., Kimura A., Ohuchi T. Effect of age on the formation of cyclic nucleotides in guinea-pig tracheal smooth muscle in response to pharmacological agents. Eur J Pharmacol. 1986 Jun 17;125(2):211–216. doi: 10.1016/0014-2999(86)90029-4. [DOI] [PubMed] [Google Scholar]
  27. Nishikawa M., de Lanerolle P., Lincoln T. M., Adelstein R. S. Phosphorylation of mammalian myosin light chain kinases by the catalytic subunit of cyclic AMP-dependent protein kinase and by cyclic GMP-dependent protein kinase. J Biol Chem. 1984 Jul 10;259(13):8429–8436. [PubMed] [Google Scholar]
  28. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  29. Popescu L. M., de Bruijn W. C., Zelck U., Ionescu N. Intracellular distribution of calcium in smooth muscle: facts and artifacts. A correlation of cytochemical, biochemical and X-ray microanalytical findings. Morphol Embryol (Bucur) 1980 Jul-Sep;26(3):251–258. [PubMed] [Google Scholar]
  30. Rapoport R. M. Cyclic guanosine monophosphate inhibition of contraction may be mediated through inhibition of phosphatidylinositol hydrolysis in rat aorta. Circ Res. 1986 Mar;58(3):407–410. doi: 10.1161/01.res.58.3.407. [DOI] [PubMed] [Google Scholar]
  31. Rembold C. M., Murphy R. A. Myoplasmic calcium, myosin phosphorylation, and regulation of the crossbridge cycle in swine arterial smooth muscle. Circ Res. 1986 Jun;58(6):803–815. doi: 10.1161/01.res.58.6.803. [DOI] [PubMed] [Google Scholar]
  32. Sato K., Ozaki H., Karaki H. Multiple effects of caffeine on contraction and cytosolic free Ca2+ levels in vascular smooth muscle of rat aorta. Naunyn Schmiedebergs Arch Pharmacol. 1988 Oct;338(4):443–448. doi: 10.1007/BF00172125. [DOI] [PubMed] [Google Scholar]
  33. Suematsu E., Hirata M., Kuriyama H. Effects of cAMP- and cGMP-dependent protein kinases, and calmodulin on Ca2+ uptake by highly purified sarcolemmal vesicles of vascular smooth muscle. Biochim Biophys Acta. 1984 Jun 13;773(1):83–90. doi: 10.1016/0005-2736(84)90552-2. [DOI] [PubMed] [Google Scholar]
  34. Sumimoto K., Domae M., Yamanaka K., Nakao K., Hashimoto T., Kitamura K., Kuriyama H. Actions of nicorandil on vascular smooth muscles. J Cardiovasc Pharmacol. 1987;10 (Suppl 8):S66–S75. [PubMed] [Google Scholar]
  35. Sumimoto K., Kuriyama H. Mobilization of free Ca2+ measured during contraction-relaxation cycles in smooth muscle cells of the porcine coronary artery using quin2. Pflugers Arch. 1986 Feb;406(2):173–180. doi: 10.1007/BF00586679. [DOI] [PubMed] [Google Scholar]
  36. Tsien R. Y., Rink T. J., Poenie M. Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelengths. Cell Calcium. 1985 Apr;6(1-2):145–157. doi: 10.1016/0143-4160(85)90041-7. [DOI] [PubMed] [Google Scholar]
  37. Vrolix M., Raeymaekers L., Wuytack F., Hofmann F., Casteels R. Cyclic GMP-dependent protein kinase stimulates the plasmalemmal Ca2+ pump of smooth muscle via phosphorylation of phosphatidylinositol. Biochem J. 1988 Nov 1;255(3):855–863. doi: 10.1042/bj2550855. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES