Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 May;100(1):63–68. doi: 10.1111/j.1476-5381.1990.tb12052.x

P2-, but not P1-purinoceptors mediate formation of 1, 4, 5-inositol trisphosphate and its metabolites via a pertussis toxin-insensitive pathway in the rat renal cortex.

C Nanoff 1, M Freissmuth 1, E Tuisl 1, W Schütz 1
PMCID: PMC1917458  PMID: 2115389

Abstract

1. The adenosine receptor (P1-purinoceptor) agonists N6-cyclopentyladenosine and N-5'-ethyl-carboxamidoadenosine at concentrations up to 10 mumols 1(-1) affected neither basal, nor noradrenaline- and angiotensin II-stimulated formation of inositol-1-phosphate, inositol-1,4-bisphosphate, and inositol-1,4,5-trisphosphate in slices of rat renal cortex. 2. In contrast, adenine nucleotides (P2-purinoceptor agonists) markedly stimulated inositol phosphate formation. The observed rank order of potency adenosine-5'-O-(2-thiodiphosphate) (EC50 39 mumols 1(-1] greater than adenosine-5'-O-(3-thiotriphosphate) (587) greater than or equal to 5'-adenylylimidodiphosphate (App(NH)p, 899) greater than adenylyl-(beta, gamma-methylene)-diphosphate (4,181) was consistent with the interaction of the compounds with the P2Y-subtype of P2-purinoceptors. AMP and the ADP analogue (alpha, beta-methylene)-adenosine-5'-diphosphate were ineffective. ATP and ADP (less than or equal to 10 mmol 1(-1] did not produce a consistent increase, owing to their hydrolytic degradation in the incubation medium. 3. Whereas the inositol phosphate response to App(NH)p was linear only up to 5 min incubation, the time-dependent stimulation of noradrenaline declined at a slower rate. Following pre-exposure of the renal cortical slices to App(NH)p, renewed addition of App(NH)p caused no further enhancement in the accumulation of inositol phosphates, whilst noradrenaline was still capable of eliciting a response. This suggests that the apparent loss of responsiveness to App(NH)p is not due to substrate depletion or enzymatic inactivation, but most likely attributable to homologous desensitization of the purinoceptor.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
63

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Latif A. A. Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers. Pharmacol Rev. 1986 Sep;38(3):227–272. [PubMed] [Google Scholar]
  2. Arend L. J., Handler J. S., Rhim J. S., Gusovsky F., Spielman W. S. Adenosine-sensitive phosphoinositide turnover in a newly established renal cell line. Am J Physiol. 1989 Jun;256(6 Pt 2):F1067–F1074. doi: 10.1152/ajprenal.1989.256.6.F1067. [DOI] [PubMed] [Google Scholar]
  3. Barajas L., Powers K., Wang P. Innervation of the renal cortical tubules: a quantitative study. Am J Physiol. 1984 Jul;247(1 Pt 2):F50–F60. doi: 10.1152/ajprenal.1984.247.1.F50. [DOI] [PubMed] [Google Scholar]
  4. Berridge M. J. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J. 1983 Jun 15;212(3):849–858. doi: 10.1042/bj2120849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bokoch G. M., Katada T., Northup J. K., Hewlett E. L., Gilman A. G. Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J Biol Chem. 1983 Feb 25;258(4):2072–2075. [PubMed] [Google Scholar]
  6. Boyer J. L., Downes C. P., Harden T. K. Kinetics of activation of phospholipase C by P2Y purinergic receptor agonists and guanine nucleotides. J Biol Chem. 1989 Jan 15;264(2):884–890. [PubMed] [Google Scholar]
  7. Burnstock G., Cusack N. J., Meldrum L. A. Studies on the stereoselectivity of the P2-purinoceptor on the guinea-pig vas deferens. Br J Pharmacol. 1985 Feb;84(2):431–434. doi: 10.1111/j.1476-5381.1985.tb12927.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burnstock G., Kennedy C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol. 1985;16(5):433–440. doi: 10.1016/0306-3623(85)90001-1. [DOI] [PubMed] [Google Scholar]
  9. Burnstock G., Warland J. J. P2-purinoceptors of two subtypes in the rabbit mesenteric artery: reactive blue 2 selectively inhibits responses mediated via the P2y-but not the P2x-purinoceptor. Br J Pharmacol. 1987 Feb;90(2):383–391. doi: 10.1111/j.1476-5381.1987.tb08968.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Churchill P. C., Churchill M. C. A1 and A2 adenosine receptor activation inhibits and stimulates renin secretion of rat renal cortical slices. J Pharmacol Exp Ther. 1985 Mar;232(3):589–594. [PubMed] [Google Scholar]
  11. Cooper C. L., Morris A. J., Harden T. K. Guanine nucleotide-sensitive interaction of a radiolabeled agonist with a phospholipase C-linked P2y-purinergic receptor. J Biol Chem. 1989 Apr 15;264(11):6202–6206. [PubMed] [Google Scholar]
  12. DiBona G. F. Neural control of renal function: role of renal alpha adrenoceptors. J Cardiovasc Pharmacol. 1985;7 (Suppl 8):S18–S23. [PubMed] [Google Scholar]
  13. Dubyak G. R. Extracellular ATP activates polyphosphoinositide breakdown and Ca2+ mobilization in Ehrlich ascites tumor cells. Arch Biochem Biophys. 1986 Feb 15;245(1):84–95. doi: 10.1016/0003-9861(86)90192-x. [DOI] [PubMed] [Google Scholar]
  14. Fedan J. S., Hogaboom G. K., O'Donnell J. P. Further comparison of contractions of the smooth muscle of the guinea-pig isolated vas deferens induced by ATP and related analogs. Eur J Pharmacol. 1986 Oct 7;129(3):279–291. doi: 10.1016/0014-2999(86)90438-3. [DOI] [PubMed] [Google Scholar]
  15. Freissmuth M., Casey P. J., Gilman A. G. G proteins control diverse pathways of transmembrane signaling. FASEB J. 1989 Aug;3(10):2125–2131. [PubMed] [Google Scholar]
  16. Freissmuth M., Hausleithner V., Tuisl E., Nanoff C., Schütz W. Glomeruli and microvessels of the rabbit kidney contain both A1- and A2-adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol. 1987 Apr;335(4):438–444. doi: 10.1007/BF00165560. [DOI] [PubMed] [Google Scholar]
  17. Freissmuth M., Nanoff C., Tuisl E., Schuetz W. Stimulation of adenylate cyclase activity via A2-adenosine receptors in isolated tubules of the rabbit renal cortex. Eur J Pharmacol. 1987 Jun 12;138(1):137–140. doi: 10.1016/0014-2999(87)90350-5. [DOI] [PubMed] [Google Scholar]
  18. Gordon J. L. Extracellular ATP: effects, sources and fate. Biochem J. 1986 Jan 15;233(2):309–319. doi: 10.1042/bj2330309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hackenthal E., Taugner R. Hormonal signals and intracellular messengers for renin secretion. Mol Cell Endocrinol. 1986 Sep;47(1-2):1–12. doi: 10.1016/0303-7207(86)90010-9. [DOI] [PubMed] [Google Scholar]
  20. Hall J. E., Granger J. P., Hester R. L. Interactions between adenosine and angiotensin II in controlling glomerular filtration. Am J Physiol. 1985 Mar;248(3 Pt 2):F340–F346. doi: 10.1152/ajprenal.1985.248.3.F340. [DOI] [PubMed] [Google Scholar]
  21. Imagawa J., Kusaba-Suzuki M., Satoh S. Preferential inhibitory effect of nifedipine on angiotensin II-induced renal vasoconstriction. Hypertension. 1986 Oct;8(10):897–903. doi: 10.1161/01.hyp.8.10.897. [DOI] [PubMed] [Google Scholar]
  22. Okajima F., Sato K., Nazarea M., Sho K., Kondo Y. A permissive role of pertussis toxin substrate G-protein in P2-purinergic stimulation of phosphoinositide turnover and arachidonate release in FRTL-5 thyroid cells. Cooperative mechanism of signal transduction systems. J Biol Chem. 1989 Aug 5;264(22):13029–13037. [PubMed] [Google Scholar]
  23. Okajima F., Tokumitsu Y., Kondo Y., Ui M. P2-purinergic receptors are coupled to two signal transduction systems leading to inhibition of cAMP generation and to production of inositol trisphosphate in rat hepatocytes. J Biol Chem. 1987 Oct 5;262(28):13483–13490. [PubMed] [Google Scholar]
  24. Pirotton S., Raspe E., Demolle D., Erneux C., Boeynaems J. M. Involvement of inositol 1,4,5-trisphosphate and calcium in the action of adenine nucleotides on aortic endothelial cells. J Biol Chem. 1987 Dec 25;262(36):17461–17466. [PubMed] [Google Scholar]
  25. Plevin R. J., Parsons B. J., Butcher P., Poat J. A. The possible involvement of changes in phosphoinositol turnover in the responses of renal sodium transport to noradrenaline. Biochem Pharmacol. 1988 Jun 1;37(11):2121–2124. doi: 10.1016/0006-2952(88)90569-2. [DOI] [PubMed] [Google Scholar]
  26. Rossi N. F., Churchill P. C., Churchill M. C. Pertussis toxin reverses adenosine receptor-mediated inhibition of renin secretion in rat renal cortical slices. Life Sci. 1987 Feb 2;40(5):481–487. doi: 10.1016/0024-3205(87)90114-7. [DOI] [PubMed] [Google Scholar]
  27. Rossi N., Churchill P., Ellis V., Amore B. Mechanism of adenosine receptor-induced renal vasoconstriction in rats. Am J Physiol. 1988 Oct;255(4 Pt 2):H885–H890. doi: 10.1152/ajpheart.1988.255.4.H885. [DOI] [PubMed] [Google Scholar]
  28. Scholz J., Schaefer B., Schmitz W., Scholz H., Steinfath M., Lohse M., Schwabe U., Puurunen J. Alpha-1 adrenoceptor-mediated positive inotropic effect and inositol trisphosphate increase in mammalian heart. J Pharmacol Exp Ther. 1988 Apr;245(1):327–335. [PubMed] [Google Scholar]
  29. Sternweis P. C., Northup J. K., Smigel M. D., Gilman A. G. The regulatory component of adenylate cyclase. Purification and properties. J Biol Chem. 1981 Nov 25;256(22):11517–11526. [PubMed] [Google Scholar]
  30. Welford L. A., Cusack N. J., Hourani S. M. ATP analogues and the guinea-pig taenia coli: a comparison of the structure-activity relationships of ectonucleotidases with those of the P2-purinoceptor. Eur J Pharmacol. 1986 Oct 7;129(3):217–224. doi: 10.1016/0014-2999(86)90431-0. [DOI] [PubMed] [Google Scholar]
  31. Westfall D. P., Stitzel R. E., Rowe J. N. The postjunctional effects and neural release of purine compounds in the guinea-pig vas deferens. Eur J Pharmacol. 1978 Jul 1;50(1):27–38. doi: 10.1016/0014-2999(78)90250-9. [DOI] [PubMed] [Google Scholar]
  32. el-Moatassim C., Dornand J., Mani J. C. Extracellular ATP increases cytosolic free calcium in thymocytes and initiates the blastogenesis of the phorbol 12-myristate 13-acetate-treated medullary population. Biochim Biophys Acta. 1987 Mar 11;927(3):437–444. doi: 10.1016/0167-4889(87)90110-8. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES