Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 May;100(1):138–142. doi: 10.1111/j.1476-5381.1990.tb12065.x

Role of beta-adrenoceptor-adenylate cyclase system in the developmental decrease in sensitivity to isoprenaline in foetal and neonatal rat heart.

H Tanaka 1, K Shigenobu 1
PMCID: PMC1917467  PMID: 2164856

Abstract

1. The inotropic and chronotropic sensitivity to noradrenaline and isoprenaline (Iso) of foetal and neonatal rat heart decreases as the heart becomes sympathetically innervated. In the present study, we have examined adenylate cyclase (AC) activation and beta-adrenoceptor binding to determine whether a developmental decrease in sensitivity was demonstrable in the beta-receptor-AC system of atrial and ventricular membranes from the 15 day foetus and 1 day and 7 day neonates. 2. While the maximum activation of AC by Iso increased with age, the sensitivity expressed in terms of pD2 values decreased from the 15th foetal day to the first day after birth in the atria, and from the first day to the 7th day after birth in the ventricle. 3. In contrast, activation of AC by forskolin was almost identical at all ages both in atria and ventricle. 4. The maximum equilibrium binding of [3H]-dihydroalprenolol decreased with age, the dissociation constant being about the same at all ages in both the atria and ventricle. 5. In conclusion, we have demonstrated a developmental decrease in the sensitivity of AC to Iso in myocardial membrane fractions consistent with the developmental decrease in chronotropic and inotropic sensitivity to beta-adrenoceptor agonists. Although a reduction in beta-adrenoceptor number partly accounts for the decrease in sensitivity, some other factors such as decreased coupling to AC may largely be responsible.

Full text

PDF
138

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe K., Wang C. H., Tanaka H., Saito H., Matsuki N. Characteristics of cardiac beta-adrenoceptors in Suncus murinus. Chem Pharm Bull (Tokyo) 1988 Oct;36(10):4081–4087. doi: 10.1248/cpb.36.4081. [DOI] [PubMed] [Google Scholar]
  2. Cros G. H., McNeill J. H. Reserpine-induced supersensitivity in adenylate cyclase preparations from guinea-pig heart. Eur J Pharmacol. 1987 Jul 2;139(1):97–101. doi: 10.1016/0014-2999(87)90502-4. [DOI] [PubMed] [Google Scholar]
  3. De Champlain J., Malmfors T., Olson L., Sachs C. Ontogenesis of peripheral adrenergic neurons in the rat: pre- and postnatal observations. Acta Physiol Scand. 1970 Oct;80(2):276–288. doi: 10.1111/j.1748-1716.1970.tb04791.x. [DOI] [PubMed] [Google Scholar]
  4. GOMEZ H. The development of the innervation of the heart in the rat embryo. Anat Rec. 1958 Jan;130(1):53–71. doi: 10.1002/ar.1091300106. [DOI] [PubMed] [Google Scholar]
  5. Goto K., Longhurst P. A., Cassis L. A., Head R. J., Taylor D. A., Rice P. J., Fleming W. W. Surgical sympathectomy of the heart in rodents and its effect on sensitivity to agonists. J Pharmacol Exp Ther. 1985 Jul;234(1):280–287. [PubMed] [Google Scholar]
  6. Higgins D., Pappano A. J. Developmental changes in the sensitivity of the chick embryo ventricle to beta-adrenergic agonist during adrenergic innervation. Circ Res. 1981 Feb;48(2):245–253. doi: 10.1161/01.res.48.2.245. [DOI] [PubMed] [Google Scholar]
  7. Ishii K., Ishii N., Shigenobu K., Kasuya Y. Acetylcholine supersensitivity in the rat heart produced by neonatal sympathectomy. Can J Physiol Pharmacol. 1985 Jul;63(7):898–899. doi: 10.1139/y85-147. [DOI] [PubMed] [Google Scholar]
  8. Ishii K., Shigenobu K., Kasuya Y. Postjunctional supersensitivity in young rat heart produced by immunological and chemical sympathectomy. J Pharmacol Exp Ther. 1982 Jan;220(1):209–215. [PubMed] [Google Scholar]
  9. Ishikawa T., Okamura N., Saito A., Goto K. Effects of calcitonin gene-related peptide (CGRP) and isoproterenol on the contractility and adenylate cyclase activity in the rat heart. J Mol Cell Cardiol. 1987 Aug;19(8):723–727. doi: 10.1016/s0022-2828(87)80383-8. [DOI] [PubMed] [Google Scholar]
  10. Iversen L. L., De Champlain J., Glowinski J., Axelrod J. Uptake, storage and metabolism of norepinephrine in tissues of the developing rat. J Pharmacol Exp Ther. 1967 Sep;157(3):509–516. [PubMed] [Google Scholar]
  11. Kenakin T. P. The classification of drugs and drug receptors in isolated tissues. Pharmacol Rev. 1984 Sep;36(3):165–222. [PubMed] [Google Scholar]
  12. Koike K., Tanaka H., Shigenobu K., Takayanagi I. Binding of [3H]befunolol to beta-adrenoceptors in cardiac muscles of fetal and neonatal rat. Can J Physiol Pharmacol. 1988 Jul;66(7):957–960. doi: 10.1139/y88-156. [DOI] [PubMed] [Google Scholar]
  13. Latifpour J., McNeill J. H. Reserpine-induced changes in cardiac adrenergic receptors. Can J Physiol Pharmacol. 1984 Jan;62(1):23–26. doi: 10.1139/y84-003. [DOI] [PubMed] [Google Scholar]
  14. Lipp J. A., Rudolph A. M. Sympathetic nerve development in the rat and guinea-pig heart. Biol Neonate. 1972;21(1):76–82. doi: 10.1159/000240497. [DOI] [PubMed] [Google Scholar]
  15. Mackenzie E., Standen N. B. The postnatal development of adrenoceptor responses in isolated papillary muscles from rat. Pflugers Arch. 1980 Jan;383(2):185–187. doi: 10.1007/BF00581881. [DOI] [PubMed] [Google Scholar]
  16. Mirkin B. L. Ontogenesis of the adrenergic nervous system: functional and pharmacologic implications. Fed Proc. 1972 Jan-Feb;31(1):65–73. [PubMed] [Google Scholar]
  17. Nomura Y., Kajiyama H., Segawa T. Hypersensitivity of cardiac beta-adrenergic receptors after neonatal treatment of rats with 6-hydroxydopa. Eur J Pharmacol. 1980 Aug 29;66(2-3):225–232. doi: 10.1016/0014-2999(80)90146-6. [DOI] [PubMed] [Google Scholar]
  18. Pappano A. J. Ontogenetic development of autonomic neuroeffector transmission and transmitter reactivity in embryonic and fetal hearts. Pharmacol Rev. 1977 Mar;29(1):3–33. [PubMed] [Google Scholar]
  19. Shigenobu K., Tanaka H., Kasuya Y. Changes in sensitivity of rat heart to norepinephrine and isoproterenol during pre- and postnatal development and its relation to sympathetic innervation. Dev Pharmacol Ther. 1988;11(4):226–236. doi: 10.1159/000457693. [DOI] [PubMed] [Google Scholar]
  20. Smith C. J., Pappano A. J. A role for adenylate cyclase in the subsensitivity to isoproterenol during ontogenesis of the embryonic chick ventricle. J Pharmacol Exp Ther. 1985 Nov;235(2):335–343. [PubMed] [Google Scholar]
  21. Tanaka H., Kasuya Y., Saito H., Shigenobu K. Organ culture of rat heart: maintained high sensitivity of fetal atria before innervation to norepinephrine. Can J Physiol Pharmacol. 1988 Jul;66(7):901–906. doi: 10.1139/y88-147. [DOI] [PubMed] [Google Scholar]
  22. Tanaka H., Kasuya Y., Shigenobu K. Altered responsiveness to autonomic transmitters of hearts from neonatal spontaneously hypertensive rats. J Cardiovasc Pharmacol. 1988 Dec;12(6):678–682. doi: 10.1097/00005344-198812000-00009. [DOI] [PubMed] [Google Scholar]
  23. Tanaka H., Shigenobu K. Effect of ryanodine on neonatal and adult rat heart: developmental increase in sarcoplasmic reticulum function. J Mol Cell Cardiol. 1989 Dec;21(12):1305–1313. doi: 10.1016/0022-2828(89)90676-7. [DOI] [PubMed] [Google Scholar]
  24. Venter J. C. High efficiency coupling between beta-adrenergic receptors and cardiac contractility: direct evidence for "spare" beta-adrenergic receptors. Mol Pharmacol. 1979 Sep;16(2):429–440. [PubMed] [Google Scholar]
  25. Whitsett J. A., Darovec-Beckerman C. Developmental aspects of beta-adrenergic receptors and catecholamine-sensitive adenylate cyclase in rat myocardium. Pediatr Res. 1981 Oct;15(10):1363–1369. doi: 10.1203/00006450-198110000-00013. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES