Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Jul;71(7):5133–5139. doi: 10.1128/jvi.71.7.5133-5139.1997

Molecular basis for the differential subcellular localization of the 38- and 39-kilodalton structural proteins of Borna disease virus.

J M Pyper 1, A E Gartner 1
PMCID: PMC191748  PMID: 9188580

Abstract

Borna disease virus (BDV) is a nonsegmented negative-strand (NNS) RNA virus that is unusual because it replicates in the nucleus. The most abundant viral protein in infected cells is a 38/39-kDa doublet that is presumed to represent the nucleocapsid. Infectious particles also contain high levels of this protein, accounting for at least 50% of the viral proteins. The two forms of the protein differ by an additional 13 amino acids that are present at the amino terminus of the 39-kDa form and missing from the 38-kDa form. To examine whether this difference in amino acid content affects the localization of this protein in cells, the 39- and 38-kDa proteins were expressed in transfected cells. The 39-kDa form was concentrated in the nucleus, whereas the 38-kDa form was found in both the nucleus and cytoplasm. Inspection of the extra 13 amino acids present in the 39-kDa form revealed a sequence (Pro-Lys-Arg-Arg) that is very similar to the nuclear localization signals (in both sequence homology and amino-terminal location) of the VP1 proteins of simian virus 40 and polyomavirus. Primer extension analysis of total RNA from infected cells suggests that there are two mRNA species encoding the two forms of the nucleocapsid protein. In infected cells, the 39-kDa form is expressed at about twofold-higher levels than the 38-kDa form at both the RNA and protein levels. The novel nuclear localization of the 39-kDa nucleocapsid-like protein suggests that this form of the protein is targeted to the nucleus, the site for viral RNA replication, and that it may associate with genomic RNA.

Full Text

The Full Text of this article is available as a PDF (490.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bautista J. R., Schwartz G. J., De La Torre J. C., Moran T. H., Carbone K. M. Early and persistent abnormalities in rats with neonatally acquired Borna disease virus infection. Brain Res Bull. 1994;34(1):31–40. doi: 10.1016/0361-9230(94)90183-x. [DOI] [PubMed] [Google Scholar]
  2. Biedler J. L., Helson L., Spengler B. A. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 1973 Nov;33(11):2643–2652. [PubMed] [Google Scholar]
  3. Bouloy M., Plotch S. J., Krug R. M. Globin mRNAs are primers for the transcription of influenza viral RNA in vitro. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4886–4890. doi: 10.1073/pnas.75.10.4886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Briese T., Schneemann A., Lewis A. J., Park Y. S., Kim S., Ludwig H., Lipkin W. I. Genomic organization of Borna disease virus. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4362–4366. doi: 10.1073/pnas.91.10.4362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Briese T., de la Torre J. C., Lewis A., Ludwig H., Lipkin W. I. Borna disease virus, a negative-strand RNA virus, transcribes in the nucleus of infected cells. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11486–11489. doi: 10.1073/pnas.89.23.11486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caton A. J., Robertson J. S. Structure of the host-derived sequences present at the 5' ends of influenza virus mRNA. Nucleic Acids Res. 1980 Jun 25;8(12):2591–2603. doi: 10.1093/nar/8.12.2591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chang D., Haynes J. I., 2nd, Brady J. N., Consigli R. A. The use of additive and subtractive approaches to examine the nuclear localization sequence of the polyomavirus major capsid protein VP1. Virology. 1992 Aug;189(2):821–827. doi: 10.1016/0042-6822(92)90615-v. [DOI] [PubMed] [Google Scholar]
  8. Cubitt B., Oldstone C., Valcarcel J., Carlos de la Torre J. RNA splicing contributes to the generation of mature mRNAs of Borna disease virus, a non-segmented negative strand RNA virus. Virus Res. 1994 Oct;34(1):69–79. doi: 10.1016/0168-1702(94)90120-1. [DOI] [PubMed] [Google Scholar]
  9. Cubitt B., Oldstone C., de la Torre J. C. Sequence and genome organization of Borna disease virus. J Virol. 1994 Mar;68(3):1382–1396. doi: 10.1128/jvi.68.3.1382-1396.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cubitt B., de la Torre J. C. Borna disease virus (BDV), a nonsegmented RNA virus, replicates in the nuclei of infected cells where infectious BDV ribonucleoproteins are present. J Virol. 1994 Mar;68(3):1371–1381. doi: 10.1128/jvi.68.3.1371-1381.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dingwall C., Laskey R. A. Nuclear targeting sequences--a consensus? Trends Biochem Sci. 1991 Dec;16(12):478–481. doi: 10.1016/0968-0004(91)90184-w. [DOI] [PubMed] [Google Scholar]
  12. Dittrich W., Bode L., Ludwig H., Kao M., Schneider K. Learning deficiencies in Borna disease virus-infected but clinically healthy rats. Biol Psychiatry. 1989 Dec;26(8):818–828. doi: 10.1016/0006-3223(89)90122-4. [DOI] [PubMed] [Google Scholar]
  13. Gosztonyi G., Ludwig H. Borna disease--neuropathology and pathogenesis. Curr Top Microbiol Immunol. 1995;190:39–73. [PubMed] [Google Scholar]
  14. Haas B., Becht H., Rott R. Purification and properties of an intranuclear virus-specific antigen from tissue infected with Borna disease virus. J Gen Virol. 1986 Feb;67(Pt 2):235–241. doi: 10.1099/0022-1317-67-2-235. [DOI] [PubMed] [Google Scholar]
  15. Herzog S., Rott R. Replication of Borna disease virus in cell cultures. Med Microbiol Immunol. 1980;168(3):153–158. doi: 10.1007/BF02122849. [DOI] [PubMed] [Google Scholar]
  16. Hong J. S., Engler J. A. The amino terminus of the adenovirus fiber protein encodes the nuclear localization signal. Virology. 1991 Dec;185(2):758–767. doi: 10.1016/0042-6822(91)90547-o. [DOI] [PubMed] [Google Scholar]
  17. Hsu T. A., Carbone K. M., Rubin S. A., Vonderfecht S. L., Eiden J. J. Borna disease virus p24 and p38/40 synthesized in a baculovirus expression system: virus protein interactions in insect and mammalian cells. Virology. 1994 Nov 1;204(2):854–859. doi: 10.1006/viro.1994.1608. [DOI] [PubMed] [Google Scholar]
  18. Ishii N., Minami N., Chen E. Y., Medina A. L., Chico M. M., Kasamatsu H. Analysis of a nuclear localization signal of simian virus 40 major capsid protein Vp1. J Virol. 1996 Feb;70(2):1317–1322. doi: 10.1128/jvi.70.2.1317-1322.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Martin K., Helenius A. Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell. 1991 Oct 4;67(1):117–130. doi: 10.1016/0092-8674(91)90576-k. [DOI] [PubMed] [Google Scholar]
  21. Martin K., Helenius A. Transport of incoming influenza virus nucleocapsids into the nucleus. J Virol. 1991 Jan;65(1):232–244. doi: 10.1128/jvi.65.1.232-244.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McClure M. A., Thibault K. J., Hatalski C. G., Lipkin W. I. Sequence similarity between Borna disease virus p40 and a duplicated domain within the paramyxovirus and rhabdovirus polymerase proteins. J Virol. 1992 Nov;66(11):6572–6577. doi: 10.1128/jvi.66.11.6572-6577.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Narayan O., Herzog S., Frese K., Scheefers H., Rott R. Behavioral disease in rats caused by immunopathological responses to persistent borna virus in the brain. Science. 1983 Jun 24;220(4604):1401–1403. doi: 10.1126/science.6602380. [DOI] [PubMed] [Google Scholar]
  24. Narayan O., Herzog S., Frese K., Scheefers H., Rott R. Pathogenesis of Borna disease in rats: immune-mediated viral ophthalmoencephalopathy causing blindness and behavioral abnormalities. J Infect Dis. 1983 Aug;148(2):305–315. doi: 10.1093/infdis/148.2.305. [DOI] [PubMed] [Google Scholar]
  25. Peters R. Fluorescence microphotolysis to measure nucleocytoplasmic transport and intracellular mobility. Biochim Biophys Acta. 1986 Dec 22;864(3-4):305–359. doi: 10.1016/0304-4157(86)90003-1. [DOI] [PubMed] [Google Scholar]
  26. Pyper J. M., Clements J. E. Partial purification and characterization of Borna disease virions released from infected neuroblastoma cells. Virology. 1994 Jun;201(2):380–382. doi: 10.1006/viro.1994.1304. [DOI] [PubMed] [Google Scholar]
  27. Pyper J. M., Richt J. A., Brown L., Rott R., Narayan O., Clements J. E. Genomic organization of the structural proteins of borna disease virus revealed by a cDNA clone encoding the 38-kDa protein. Virology. 1993 Jul;195(1):229–238. doi: 10.1006/viro.1993.1364. [DOI] [PubMed] [Google Scholar]
  28. Richt J. A., Clements J. E., Herzog S., Pyper J., Wahn K., Becht H. Analysis of virus-specific RNA species and proteins in Freon-113 preparations of the Borna disease virus. Med Microbiol Immunol. 1993 Nov;182(5):271–280. doi: 10.1007/BF00579625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rost B. PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol. 1996;266:525–539. doi: 10.1016/s0076-6879(96)66033-9. [DOI] [PubMed] [Google Scholar]
  30. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  31. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  32. Rott R., Becht H. Natural and experimental Borna disease in animals. Curr Top Microbiol Immunol. 1995;190:17–30. doi: 10.1007/978-3-642-78618-1_2. [DOI] [PubMed] [Google Scholar]
  33. Schneemann A., Schneider P. A., Kim S., Lipkin W. I. Identification of signal sequences that control transcription of borna disease virus, a nonsegmented, negative-strand RNA virus. J Virol. 1994 Oct;68(10):6514–6522. doi: 10.1128/jvi.68.10.6514-6522.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schneider P. A., Schneemann A., Lipkin W. I. RNA splicing in Borna disease virus, a nonsegmented, negative-strand RNA virus. J Virol. 1994 Aug;68(8):5007–5012. doi: 10.1128/jvi.68.8.5007-5012.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sprankel H., Richarz K., Ludwig H., Rott R. Behavior alterations in tree shrews (Tupaia glis, Diard 1820) induced by Borna disease virus. Med Microbiol Immunol. 1978 May 26;165(1):1–18. doi: 10.1007/BF02121228. [DOI] [PubMed] [Google Scholar]
  36. Stitz L., Dietzschold B., Carbone K. M. Immunopathogenesis of Borna disease. Curr Top Microbiol Immunol. 1995;190:75–92. doi: 10.1007/978-3-642-78618-1_5. [DOI] [PubMed] [Google Scholar]
  37. Thiedemann N., Presek P., Rott R., Stitz L. Antigenic relationship and further characterization of two major Borna disease virus-specific proteins. J Gen Virol. 1992 May;73(Pt 5):1057–1064. doi: 10.1099/0022-1317-73-5-1057. [DOI] [PubMed] [Google Scholar]
  38. Wychowski C., Benichou D., Girard M. A domain of SV40 capsid polypeptide VP1 that specifies migration into the cell nucleus. EMBO J. 1986 Oct;5(10):2569–2576. doi: 10.1002/j.1460-2075.1986.tb04536.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ye Z., Robinson D., Wagner R. R. Nucleus-targeting domain of the matrix protein (M1) of influenza virus. J Virol. 1995 Mar;69(3):1964–1970. doi: 10.1128/jvi.69.3.1964-1970.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES