Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 May;100(1):55–62. doi: 10.1111/j.1476-5381.1990.tb12051.x

Interactions between adenosine and phorbol esters or lithium at the frog neuromuscular junction.

A M Sebastião 1, J A Ribeiro 1
PMCID: PMC1917481  PMID: 2164862

Abstract

1. Interactions between the effects of adenosine or 2-chloro-adenosine (CADO) and the effects of substances that interfere with the phosphoinositides/protein kinase C transducing system or with the adenylate cyclase transducing system, on endplate potentials (e.p.ps), were investigated. The preparation used was the innervated sartorius muscle of the frog in which twitches had been prevented with high magnesium concentrations. 2. The activator of protein kinase C, 4 beta-phorbol-12,13-diacetate (PDAc), reversibly increased the amplitude and the quantal content of e.p.ps and attenuated the inhibitory effects of adenosine and CADO on e.p.p. amplitude. The affinity of the adenosine receptor antagonist, 8-phenyltheophylline, was not modified by PDAc. 3. The phorbol ester 4 alpha-phorbol-12,13-didecanoate, which does not activate protein kinase C, did not modify either e.p.p amplitude or the inhibitory effect of adenosine on e.p.ps. 4. The inhibitor of protein kinase C, polymyxin B, reversibly decreased the amplitude and the quantal content of e.p.ps, prevented the enhancement caused by PDAc on e.p.p. amplitude, but did not modify the inhibitory effect of adenosine on e.p.ps. H-7, another inhibitor of protein kinases, also decreased e.p.p. amplitude but did not modify the effect of PDAc on the amplitude of e.p.ps. 5. Lithium chloride, which alters phosphoinositide signal transduction by inhibiting the breakdown of inositol phosphates, reversibly increased the amplitude and the quantal content of the e.p.ps. In the presence of adenosine or CADO the effect of lithium on e.p.p. amplitude was markedly attenuated. 6. The activator of adenylate cyclase, forskolin, reversibly increased the amplitude and the quantal content of the e.p.ps.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
55

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Latif A. A. Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers. Pharmacol Rev. 1986 Sep;38(3):227–272. [PubMed] [Google Scholar]
  2. Caratsch C. G., Schumacher S., Grassi F., Eusebi F. Influence of protein kinase C-stimulation by a phorbol ester on neurotransmitter release at frog end-plates. Naunyn Schmiedebergs Arch Pharmacol. 1988 Jan;337(1):9–12. doi: 10.1007/BF00169469. [DOI] [PubMed] [Google Scholar]
  3. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  4. Daly J. W., Bruns R. F., Snyder S. H. Adenosine receptors in the central nervous system: relationship to the central actions of methylxanthines. Life Sci. 1981 May 11;28(19):2083–2097. doi: 10.1016/0024-3205(81)90614-7. [DOI] [PubMed] [Google Scholar]
  5. DeRiemer S. A., Strong J. A., Albert K. A., Greengard P., Kaczmarek L. K. Enhancement of calcium current in Aplysia neurones by phorbol ester and protein kinase C. Nature. 1985 Jan 24;313(6000):313–316. doi: 10.1038/313313a0. [DOI] [PubMed] [Google Scholar]
  6. Delahunty T. M., Cronin M. J., Linden J. Regulation of GH3-cell function via adenosine A1 receptors. Inhibition of prolactin release, cyclic AMP production and inositol phosphate generation. Biochem J. 1988 Oct 1;255(1):69–77. doi: 10.1042/bj2550069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FATT P., KATZ B. An analysis of the end-plate potential recorded with an intracellular electrode. J Physiol. 1951 Nov 28;115(3):320–370. doi: 10.1113/jphysiol.1951.sp004675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fredholm B. B., Lindgren E. Protein kinase C activation increases noradrenaline release from the rat hippocampus and modifies the inhibitory effect of alpha 2-adrenoceptor and adenosine A1-receptor agonists. Naunyn Schmiedebergs Arch Pharmacol. 1988 May;337(5):477–483. doi: 10.1007/BF00182719. [DOI] [PubMed] [Google Scholar]
  9. Ginsborg B. L., Hirst G. D. The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J Physiol. 1972 Aug;224(3):629–645. doi: 10.1113/jphysiol.1972.sp009916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gross R. A., Macdonald R. L., Ryan-Jastrow T. 2-Chloroadenosine reduces the N calcium current of cultured mouse sensory neurones in a pertussis toxin-sensitive manner. J Physiol. 1989 Apr;411:585–595. doi: 10.1113/jphysiol.1989.sp017592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haimann C., Meldolesi J., Ceccarelli B. The phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate, enhances the evoked quanta release of acetylcholine at the frog neuromuscular junction. Pflugers Arch. 1987 Jan;408(1):27–31. doi: 10.1007/BF00581836. [DOI] [PubMed] [Google Scholar]
  12. Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
  13. Huang H. Y., Allgaier C., Hertting G., Jackisch R. Phorbol ester-mediated enhancement of hippocampal noradrenaline release: which ion channels are involved? Eur J Pharmacol. 1988 Aug 24;153(2-3):175–184. doi: 10.1016/0014-2999(88)90604-8. [DOI] [PubMed] [Google Scholar]
  14. Hunt N. H., Evans T. RMI 12330A, an inhibitor of cyclic nucleotide phosphodiesterases and adenylate cyclase in kidney preparations. Biochim Biophys Acta. 1980 Jun 13;613(2):499–506. doi: 10.1016/0005-2744(80)90105-9. [DOI] [PubMed] [Google Scholar]
  15. Jarvis S. M., Martin B. W., Ng A. S. 2-Chloroadenosine, a permeant for the nucleoside transporter. Biochem Pharmacol. 1985 Sep 15;34(18):3237–3241. doi: 10.1016/0006-2952(85)90340-5. [DOI] [PubMed] [Google Scholar]
  16. Kendall D. A., Hill S. J. Adenosine inhibition of histamine-stimulated inositol phospholipid hydrolysis in mouse cerebral cortex. J Neurochem. 1988 Feb;50(2):497–502. doi: 10.1111/j.1471-4159.1988.tb02939.x. [DOI] [PubMed] [Google Scholar]
  17. Kuo J. F., Raynor R. L., Mazzei G. J., Schatzman R. C., Turner R. S., Kem W. R. Cobra polypeptide cytotoxin I and marine worm polypeptide cytotoxin A-IV are potent and selective inhibitors of phospholipid-sensitive Ca2+-dependent protein kinase. FEBS Lett. 1983 Mar 7;153(1):183–186. doi: 10.1016/0014-5793(83)80144-6. [DOI] [PubMed] [Google Scholar]
  18. Leach K. L., James M. L., Blumberg P. M. Characterization of a specific phorbol ester aporeceptor in mouse brain cytosol. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4208–4212. doi: 10.1073/pnas.80.14.4208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Markstein R., Digges K., Marshall N. R., Starke K. Forskolin and the release of noradrenaline in cerebrocortical slices. Naunyn Schmiedebergs Arch Pharmacol. 1984 Jan;325(1):17–24. doi: 10.1007/BF00507049. [DOI] [PubMed] [Google Scholar]
  20. Nichols R. A., Haycock J. W., Wang J. K., Greengard P. Phorbol ester enhancement of neurotransmitter release from rat brain synaptosomes. J Neurochem. 1987 Feb;48(2):615–621. doi: 10.1111/j.1471-4159.1987.tb04137.x. [DOI] [PubMed] [Google Scholar]
  21. Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
  22. Nordstedt C., Fredholm B. B. Phorbol-12,13-dibutyrate enhances the cyclic AMP accumulation in rat hippocampal slices induced by adenosine analogues. Naunyn Schmiedebergs Arch Pharmacol. 1987 Feb;335(2):136–142. doi: 10.1007/BF00177714. [DOI] [PubMed] [Google Scholar]
  23. Petcoff D. W., Cooper D. M. Adenosine receptor agonists inhibit inositol phosphate accumulation in rat striatal slices. Eur J Pharmacol. 1987 Jun 4;137(2-3):269–271. doi: 10.1016/0014-2999(87)90234-2. [DOI] [PubMed] [Google Scholar]
  24. Ribeiro J. A., Dominguez M. L. Mechanisms of depression of neuromuscular transmission by ATP and adenosine. J Physiol (Paris) 1978;74(5):491–496. [PubMed] [Google Scholar]
  25. Ribeiro J. A., Sebastião A. M. Adenosine receptors and calcium: basis for proposing a third (A3) adenosine receptor. Prog Neurobiol. 1986;26(3):179–209. doi: 10.1016/0301-0082(86)90015-8. [DOI] [PubMed] [Google Scholar]
  26. Ribeiro J. A., Sebastião A. M. On the role, inactivation and origin of endogenous adenosine at the frog neuromuscular junction. J Physiol. 1987 Mar;384:571–585. doi: 10.1113/jphysiol.1987.sp016470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ribeiro J. A., Sebastião A. M. On the type of receptor involved in the inhibitory action of adenosine at the neuromuscular junction. Br J Pharmacol. 1985 Apr;84(4):911–918. doi: 10.1111/j.1476-5381.1985.tb17385.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ribeiro J. A., Sá-Almeida A. M., Namorado J. M. Adenosine and adenosine triphosphate decrease 45Ca uptake by synaptosomes stimulated by potassium. Biochem Pharmacol. 1979 Apr 15;28(8):1297–1300. doi: 10.1016/0006-2952(79)90428-3. [DOI] [PubMed] [Google Scholar]
  29. Ribeiro J. A., Walker J. The effects of adenosine triphosphate and adenosine diphosphate on transmission at the rat and frog neuromuscular junctions. Br J Pharmacol. 1975 Jun;54(2):213–218. doi: 10.1111/j.1476-5381.1975.tb06931.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rubio R., Bencherif M., Berne R. M. Inositol phospholipid metabolism during and following synaptic activation: role of adenosine. J Neurochem. 1989 Mar;52(3):797–806. doi: 10.1111/j.1471-4159.1989.tb02524.x. [DOI] [PubMed] [Google Scholar]
  31. Seamon K. B., Padgett W., Daly J. W. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3363–3367. doi: 10.1073/pnas.78.6.3363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sebastião A. M., Ribeiro J. A. 1,3,8- and 1,3,7-substituted xanthines: relative potency as adenosine receptor antagonists at the frog neuromuscular junction. Br J Pharmacol. 1989 Jan;96(1):211–219. doi: 10.1111/j.1476-5381.1989.tb11802.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sebastião A. M., Ribeiro J. A. On the adenosine receptor and adenosine inactivation at the rat diaphragm neuromuscular junction. Br J Pharmacol. 1988 May;94(1):109–120. doi: 10.1111/j.1476-5381.1988.tb11505.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sekar M. C., Hokin L. E. The role of phosphoinositides in signal transduction. J Membr Biol. 1986;89(3):193–210. doi: 10.1007/BF01870664. [DOI] [PubMed] [Google Scholar]
  35. Shapira R., Silberberg S. D., Ginsburg S., Rahamimoff R. Activation of protein kinase C augments evoked transmitter release. Nature. 1987 Jan 1;325(6099):58–60. doi: 10.1038/325058a0. [DOI] [PubMed] [Google Scholar]
  36. Shinozuka K., Maeda T., Hayashi E. Effects of adenosine on 45Ca uptake and [3H]acetylcholine release in synaptosomal preparation from guinea-pig ileum myenteric plexus. Eur J Pharmacol. 1985 Jul 31;113(3):417–424. doi: 10.1016/0014-2999(85)90090-1. [DOI] [PubMed] [Google Scholar]
  37. Silinsky E. M. On the mechanism by which adenosine receptor activation inhibits the release of acetylcholine from motor nerve endings. J Physiol. 1984 Jan;346:243–256. doi: 10.1113/jphysiol.1984.sp015019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Silinsky E. M., Vogel S. M. The effects of an adenylate cyclase inhibitor on the electrophysiological correlates of neuromuscular transmission in the frog. Br J Pharmacol. 1986 Aug;88(4):799–805. doi: 10.1111/j.1476-5381.1986.tb16252.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zurgil N., Yarom M., Zisapel N. Concerted enhancement of calcium influx, neurotransmitter release and protein phosphorylation by a phorbol ester in cultured brain neurons. Neuroscience. 1986 Dec;19(4):1255–1264. doi: 10.1016/0306-4522(86)90140-5. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES