Abstract
1. The present study describes the role of Ca2+ in the regulation of the hepatic vasopressin V1 receptor. With low concentrations of Ca2+, there was a small increase in [3H]-arginine vasopressin [( 3H]-AVP) binding, but above 10 mM, Ca2+ decreased the binding of this agonist. In contrast, low concentrations of Mg2+ were associated with a dramatic concentration-dependent increase in [3H]-AVP binding, reaching a maximal effect of 650% above control at concentrations ranging between 1-5 mM. At higher concentrations of Mg2+, the stimulatory effect of this cation was less pronounced, falling to 210% of control at 100 mM Mg2+. Strikingly, Ca2(+)-inhibited the stimulatory effect of Mg2+ in a concentration-dependent fashion. 2. Saturation binding data revealed that Ca2+ (2 to 10 mM) per se promotes the high affinity conformation of the V1 receptor for the agonist binding with the KD decreased from a control value of 2.3 nM to 0.5 nM in the presence of 10 mM Ca2+. This effect was attenuated with an increase in Ca2+ above 10 mM. With an increase in Ca2+ to 20 mM, however, the Bmax for [3H]-AVP binding was decreased. Ca2+ also decreased the high affinity/high capacity state (KD 100 pM) of the receptor induced by 1 mM Mg2+ for agonist interaction. 3. [3H]-V1 antagonist binding was inhibited by both Ca2+ and Mg2+. The IC50 values (mean +/- s.e. mean) for Ca2+ and Mg2+ were 32 +/- 8 and 53 +/- 9 mM respectively. Maximal inhibition achieved at 100 mM was 29% for Ca2+ and 42% for Mg2+.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altura B. M., Altura B. T., Carella A., Gebrewold A., Murakawa T., Nishio A. Mg2+-Ca2+ interaction in contractility of vascular smooth muscle: Mg2+ versus organic calcium channel blockers on myogenic tone and agonist-induced responsiveness of blood vessels. Can J Physiol Pharmacol. 1987 Apr;65(4):729–745. doi: 10.1139/y87-120. [DOI] [PubMed] [Google Scholar]
- Altura B. M. Magnesium-neurohypophyseal hormone interactions in contraction of vascular smooth muscle. Am J Physiol. 1975 May;228(5):1615–1620. doi: 10.1152/ajplegacy.1975.228.5.1615. [DOI] [PubMed] [Google Scholar]
- Antoni F. A., Chadio S. E. Essential role of magnesium in oxytocin-receptor affinity and ligand specificity. Biochem J. 1989 Jan 15;257(2):611–614. doi: 10.1042/bj2570611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BENTLEY P. J. THE POTENTIATING ACTION OF MAGNESIUM AND MANGANESE ON THE OXYTOCIC EFFECT OF SOME OXYTOCIN ANALOGUES. J Endocrinol. 1965 May;32:215–222. doi: 10.1677/joe.0.0320215. [DOI] [PubMed] [Google Scholar]
- Bradham L. S. Comparison of the effects of Ca 2+ and Mg 2+ on the adenyl cyclase of beef brain. Biochim Biophys Acta. 1972 Aug 28;276(2):434–443. doi: 10.1016/0005-2744(72)91005-4. [DOI] [PubMed] [Google Scholar]
- Burgisser E., De Lean A., Lefkowitz R. J. Reciprocal modulation of agonist and antagonist binding to muscarinic cholinergic receptor by guanine nucleotide. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1732–1736. doi: 10.1073/pnas.79.6.1732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cantau B., Keppens S., De Wulf H., Jard S. (3H)-vasopressin binding to isolated rat hepatocytes and liver membranes: regulation by GTP and relation to glycogen phosphorylase activation. J Recept Res. 1980;1(2):137–168. doi: 10.3109/10799898009044096. [DOI] [PubMed] [Google Scholar]
- Cornett L. E., Cate C. M. Direct identification of the rat hepatocyte arginine8 vasopressin receptor with a radiolabelled V1-selective antagonist. J Recept Res. 1989;9(1):1–18. doi: 10.3109/10799898909066041. [DOI] [PubMed] [Google Scholar]
- Fahrenholz F., Boer R., Crause P., Fritzsch G., Grzonka Z. Interactions of vasopressin agonists and antagonists with membrane receptors. Eur J Pharmacol. 1984 Apr 13;100(1):47–58. doi: 10.1016/0014-2999(84)90314-5. [DOI] [PubMed] [Google Scholar]
- Fishman J. B., Dickey B. F., Bucher N. L., Fine R. E. Internalization, recycling, and redistribution of vasopressin receptors in rat hepatocytes. J Biol Chem. 1985 Oct 15;260(23):12641–12646. [PubMed] [Google Scholar]
- Gopalakrishnan V., McNeill J. R., Sulakhe P. V., Triggle C. R. Hepatic vasopressin receptor: differential effects of divalent cations, guanine nucleotides, and N-ethylmaleimide on agonist and antagonist interactions with the V1 subtype receptor. Endocrinology. 1988 Aug;123(2):922–931. doi: 10.1210/endo-123-2-922. [DOI] [PubMed] [Google Scholar]
- Gopalakrishnan V., Triggle C. R., Sulakhe P. V., McNeill J. R. Characterization of a specific, high affinity [3H]arginine8 vasopressin-binding site on liver microsomes from different strains of rat and the role of magnesium. Endocrinology. 1986 Mar;118(3):990–997. doi: 10.1210/endo-118-3-990. [DOI] [PubMed] [Google Scholar]
- Harper J. F. Peritz' F test: basic program of a robust multiple comparison test for statistical analysis of all differences among group means. Comput Biol Med. 1984;14(4):437–445. doi: 10.1016/0010-4825(84)90044-1. [DOI] [PubMed] [Google Scholar]
- Higashijima T., Ferguson K. M., Sternweis P. C., Smigel M. D., Gilman A. G. Effects of Mg2+ and the beta gamma-subunit complex on the interactions of guanine nucleotides with G proteins. J Biol Chem. 1987 Jan 15;262(2):762–766. [PubMed] [Google Scholar]
- Hulme E. C., Berrie C. P., Birdsall N. J., Jameson M., Stockton J. M. Regulation of muscarinic agonist binding by cations and guanine nucleotides. Eur J Pharmacol. 1983 Oct 14;94(1-2):59–72. doi: 10.1016/0014-2999(83)90442-9. [DOI] [PubMed] [Google Scholar]
- Keppens S., de Wulf H. The activation of liver glycogen phosphorylase by vasopressin. FEBS Lett. 1975 Mar 1;51(1):29–32. doi: 10.1016/0014-5793(75)80848-9. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Larivière R., Schiffrin E. L. Effects of monovalent and divalent cations and of guanine nucleotides on binding of vasopressin to the rat mesenteric vasculature. Can J Physiol Pharmacol. 1987 Jun;65(6):1171–1181. doi: 10.1139/y87-185. [DOI] [PubMed] [Google Scholar]
- Martin M. W., Smith M. M., Harden T. K. Modulation of muscarinic cholinergic receptor affinity for antagonists in rat heart. J Pharmacol Exp Ther. 1984 Aug;230(2):424–430. [PubMed] [Google Scholar]
- Mauger J. P., Poggioli J., Guesdon F., Claret M. Noradrenaline, vasopressin and angiotensin increase Ca2+ influx by opening a common pool of Ca2+ channels in isolated rat liver cells. Biochem J. 1984 Jul 1;221(1):121–127. doi: 10.1042/bj2210121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McPherson G. A. A practical computer-based approach to the analysis of radioligand binding experiments. Comput Programs Biomed. 1983 Aug-Oct;17(1-2):107–113. doi: 10.1016/0010-468x(83)90031-4. [DOI] [PubMed] [Google Scholar]
- Michell R. H., Kirk C. J., Billah M. M. Hormonal stimulation of phosphatidylinositol breakdown with particular reference to the hepatic effects of vasopressin. Biochem Soc Trans. 1979 Oct;7(5):861–865. doi: 10.1042/bst0070861. [DOI] [PubMed] [Google Scholar]
- Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
- Pearlmutter A. F., Soloff M. S. Characterization of the metal ion requirement for oxytocin-receptor interaction in rat mammary gland membranes. J Biol Chem. 1979 May 25;254(10):3899–3906. [PubMed] [Google Scholar]
- Pletscher A., Erne P., Bürgisser E., Ferracin F. Activation of human blood platelets by arginine-vasopressin. Role of bivalent cations. Mol Pharmacol. 1985 Dec;28(6):508–514. [PubMed] [Google Scholar]
- Potter J. D., Gergely J. The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J Biol Chem. 1975 Jun 25;250(12):4628–4633. [PubMed] [Google Scholar]
- Soloff M. S. Regulation of oxytocin action at the receptor level. Life Sci. 1979 Oct 22;25(17):1453–1460. doi: 10.1016/0024-3205(79)90370-9. [DOI] [PubMed] [Google Scholar]
- Somlyo A. V., Woo C. Y., Somlyo A. P. Effect of magnesium on posterior pituitary hormone action on vascular smooth muscle. Am J Physiol. 1966 Apr;210(4):705–714. doi: 10.1152/ajplegacy.1966.210.4.705. [DOI] [PubMed] [Google Scholar]
- Stubbs M., Kirk C. J., Hems D. A. Role of extracellular calcium in the action of vasopressin on hepatic glycogenolysis. FEBS Lett. 1976 Oct 15;69(1):199–202. doi: 10.1016/0014-5793(76)80686-2. [DOI] [PubMed] [Google Scholar]
- Sulakhe P. V. EGTA-sensitive and -insensitive forms of particulate adenylate cyclase in rat cerebral cortex: regulation by divalent cations and GTP. Can J Physiol Pharmacol. 1985 Aug;63(8):1007–1016. doi: 10.1139/y85-166. [DOI] [PubMed] [Google Scholar]
- Sulakhe S. J., Lautt W. W. A characterization of gamma-glutamyltranspeptidase in normal, perinatal, premalignant and malignant rat liver. Int J Biochem. 1987;19(1):23–32. doi: 10.1016/0020-711x(87)90119-4. [DOI] [PubMed] [Google Scholar]
- Thibonnier M., Hinko A., Pearlmutter A. F. The human platelet vasopressin receptor and its intracellular messengers: key role of divalent cations. J Cardiovasc Pharmacol. 1987 Jul;10(1):24–29. doi: 10.1097/00005344-198707000-00004. [DOI] [PubMed] [Google Scholar]
