Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 May;100(1):5–10. doi: 10.1111/j.1476-5381.1990.tb12042.x

Calcium antagonizes the magnesium-induced high affinity state of the hepatic vasopressin receptor for the agonist interaction.

H Wang 1, V Gopalakrishnan 1, J R McNeill 1, P V Sulakhe 1, C R Triggle 1
PMCID: PMC1917482  PMID: 2372661

Abstract

1. The present study describes the role of Ca2+ in the regulation of the hepatic vasopressin V1 receptor. With low concentrations of Ca2+, there was a small increase in [3H]-arginine vasopressin [( 3H]-AVP) binding, but above 10 mM, Ca2+ decreased the binding of this agonist. In contrast, low concentrations of Mg2+ were associated with a dramatic concentration-dependent increase in [3H]-AVP binding, reaching a maximal effect of 650% above control at concentrations ranging between 1-5 mM. At higher concentrations of Mg2+, the stimulatory effect of this cation was less pronounced, falling to 210% of control at 100 mM Mg2+. Strikingly, Ca2(+)-inhibited the stimulatory effect of Mg2+ in a concentration-dependent fashion. 2. Saturation binding data revealed that Ca2+ (2 to 10 mM) per se promotes the high affinity conformation of the V1 receptor for the agonist binding with the KD decreased from a control value of 2.3 nM to 0.5 nM in the presence of 10 mM Ca2+. This effect was attenuated with an increase in Ca2+ above 10 mM. With an increase in Ca2+ to 20 mM, however, the Bmax for [3H]-AVP binding was decreased. Ca2+ also decreased the high affinity/high capacity state (KD 100 pM) of the receptor induced by 1 mM Mg2+ for agonist interaction. 3. [3H]-V1 antagonist binding was inhibited by both Ca2+ and Mg2+. The IC50 values (mean +/- s.e. mean) for Ca2+ and Mg2+ were 32 +/- 8 and 53 +/- 9 mM respectively. Maximal inhibition achieved at 100 mM was 29% for Ca2+ and 42% for Mg2+.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
5

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altura B. M., Altura B. T., Carella A., Gebrewold A., Murakawa T., Nishio A. Mg2+-Ca2+ interaction in contractility of vascular smooth muscle: Mg2+ versus organic calcium channel blockers on myogenic tone and agonist-induced responsiveness of blood vessels. Can J Physiol Pharmacol. 1987 Apr;65(4):729–745. doi: 10.1139/y87-120. [DOI] [PubMed] [Google Scholar]
  2. Altura B. M. Magnesium-neurohypophyseal hormone interactions in contraction of vascular smooth muscle. Am J Physiol. 1975 May;228(5):1615–1620. doi: 10.1152/ajplegacy.1975.228.5.1615. [DOI] [PubMed] [Google Scholar]
  3. Antoni F. A., Chadio S. E. Essential role of magnesium in oxytocin-receptor affinity and ligand specificity. Biochem J. 1989 Jan 15;257(2):611–614. doi: 10.1042/bj2570611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BENTLEY P. J. THE POTENTIATING ACTION OF MAGNESIUM AND MANGANESE ON THE OXYTOCIC EFFECT OF SOME OXYTOCIN ANALOGUES. J Endocrinol. 1965 May;32:215–222. doi: 10.1677/joe.0.0320215. [DOI] [PubMed] [Google Scholar]
  5. Bradham L. S. Comparison of the effects of Ca 2+ and Mg 2+ on the adenyl cyclase of beef brain. Biochim Biophys Acta. 1972 Aug 28;276(2):434–443. doi: 10.1016/0005-2744(72)91005-4. [DOI] [PubMed] [Google Scholar]
  6. Burgisser E., De Lean A., Lefkowitz R. J. Reciprocal modulation of agonist and antagonist binding to muscarinic cholinergic receptor by guanine nucleotide. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1732–1736. doi: 10.1073/pnas.79.6.1732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cantau B., Keppens S., De Wulf H., Jard S. (3H)-vasopressin binding to isolated rat hepatocytes and liver membranes: regulation by GTP and relation to glycogen phosphorylase activation. J Recept Res. 1980;1(2):137–168. doi: 10.3109/10799898009044096. [DOI] [PubMed] [Google Scholar]
  8. Cornett L. E., Cate C. M. Direct identification of the rat hepatocyte arginine8 vasopressin receptor with a radiolabelled V1-selective antagonist. J Recept Res. 1989;9(1):1–18. doi: 10.3109/10799898909066041. [DOI] [PubMed] [Google Scholar]
  9. Fahrenholz F., Boer R., Crause P., Fritzsch G., Grzonka Z. Interactions of vasopressin agonists and antagonists with membrane receptors. Eur J Pharmacol. 1984 Apr 13;100(1):47–58. doi: 10.1016/0014-2999(84)90314-5. [DOI] [PubMed] [Google Scholar]
  10. Fishman J. B., Dickey B. F., Bucher N. L., Fine R. E. Internalization, recycling, and redistribution of vasopressin receptors in rat hepatocytes. J Biol Chem. 1985 Oct 15;260(23):12641–12646. [PubMed] [Google Scholar]
  11. Gopalakrishnan V., McNeill J. R., Sulakhe P. V., Triggle C. R. Hepatic vasopressin receptor: differential effects of divalent cations, guanine nucleotides, and N-ethylmaleimide on agonist and antagonist interactions with the V1 subtype receptor. Endocrinology. 1988 Aug;123(2):922–931. doi: 10.1210/endo-123-2-922. [DOI] [PubMed] [Google Scholar]
  12. Gopalakrishnan V., Triggle C. R., Sulakhe P. V., McNeill J. R. Characterization of a specific, high affinity [3H]arginine8 vasopressin-binding site on liver microsomes from different strains of rat and the role of magnesium. Endocrinology. 1986 Mar;118(3):990–997. doi: 10.1210/endo-118-3-990. [DOI] [PubMed] [Google Scholar]
  13. Harper J. F. Peritz' F test: basic program of a robust multiple comparison test for statistical analysis of all differences among group means. Comput Biol Med. 1984;14(4):437–445. doi: 10.1016/0010-4825(84)90044-1. [DOI] [PubMed] [Google Scholar]
  14. Higashijima T., Ferguson K. M., Sternweis P. C., Smigel M. D., Gilman A. G. Effects of Mg2+ and the beta gamma-subunit complex on the interactions of guanine nucleotides with G proteins. J Biol Chem. 1987 Jan 15;262(2):762–766. [PubMed] [Google Scholar]
  15. Hulme E. C., Berrie C. P., Birdsall N. J., Jameson M., Stockton J. M. Regulation of muscarinic agonist binding by cations and guanine nucleotides. Eur J Pharmacol. 1983 Oct 14;94(1-2):59–72. doi: 10.1016/0014-2999(83)90442-9. [DOI] [PubMed] [Google Scholar]
  16. Keppens S., de Wulf H. The activation of liver glycogen phosphorylase by vasopressin. FEBS Lett. 1975 Mar 1;51(1):29–32. doi: 10.1016/0014-5793(75)80848-9. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Larivière R., Schiffrin E. L. Effects of monovalent and divalent cations and of guanine nucleotides on binding of vasopressin to the rat mesenteric vasculature. Can J Physiol Pharmacol. 1987 Jun;65(6):1171–1181. doi: 10.1139/y87-185. [DOI] [PubMed] [Google Scholar]
  19. Martin M. W., Smith M. M., Harden T. K. Modulation of muscarinic cholinergic receptor affinity for antagonists in rat heart. J Pharmacol Exp Ther. 1984 Aug;230(2):424–430. [PubMed] [Google Scholar]
  20. Mauger J. P., Poggioli J., Guesdon F., Claret M. Noradrenaline, vasopressin and angiotensin increase Ca2+ influx by opening a common pool of Ca2+ channels in isolated rat liver cells. Biochem J. 1984 Jul 1;221(1):121–127. doi: 10.1042/bj2210121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McPherson G. A. A practical computer-based approach to the analysis of radioligand binding experiments. Comput Programs Biomed. 1983 Aug-Oct;17(1-2):107–113. doi: 10.1016/0010-468x(83)90031-4. [DOI] [PubMed] [Google Scholar]
  22. Michell R. H., Kirk C. J., Billah M. M. Hormonal stimulation of phosphatidylinositol breakdown with particular reference to the hepatic effects of vasopressin. Biochem Soc Trans. 1979 Oct;7(5):861–865. doi: 10.1042/bst0070861. [DOI] [PubMed] [Google Scholar]
  23. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  24. Pearlmutter A. F., Soloff M. S. Characterization of the metal ion requirement for oxytocin-receptor interaction in rat mammary gland membranes. J Biol Chem. 1979 May 25;254(10):3899–3906. [PubMed] [Google Scholar]
  25. Pletscher A., Erne P., Bürgisser E., Ferracin F. Activation of human blood platelets by arginine-vasopressin. Role of bivalent cations. Mol Pharmacol. 1985 Dec;28(6):508–514. [PubMed] [Google Scholar]
  26. Potter J. D., Gergely J. The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J Biol Chem. 1975 Jun 25;250(12):4628–4633. [PubMed] [Google Scholar]
  27. Soloff M. S. Regulation of oxytocin action at the receptor level. Life Sci. 1979 Oct 22;25(17):1453–1460. doi: 10.1016/0024-3205(79)90370-9. [DOI] [PubMed] [Google Scholar]
  28. Somlyo A. V., Woo C. Y., Somlyo A. P. Effect of magnesium on posterior pituitary hormone action on vascular smooth muscle. Am J Physiol. 1966 Apr;210(4):705–714. doi: 10.1152/ajplegacy.1966.210.4.705. [DOI] [PubMed] [Google Scholar]
  29. Stubbs M., Kirk C. J., Hems D. A. Role of extracellular calcium in the action of vasopressin on hepatic glycogenolysis. FEBS Lett. 1976 Oct 15;69(1):199–202. doi: 10.1016/0014-5793(76)80686-2. [DOI] [PubMed] [Google Scholar]
  30. Sulakhe P. V. EGTA-sensitive and -insensitive forms of particulate adenylate cyclase in rat cerebral cortex: regulation by divalent cations and GTP. Can J Physiol Pharmacol. 1985 Aug;63(8):1007–1016. doi: 10.1139/y85-166. [DOI] [PubMed] [Google Scholar]
  31. Sulakhe S. J., Lautt W. W. A characterization of gamma-glutamyltranspeptidase in normal, perinatal, premalignant and malignant rat liver. Int J Biochem. 1987;19(1):23–32. doi: 10.1016/0020-711x(87)90119-4. [DOI] [PubMed] [Google Scholar]
  32. Thibonnier M., Hinko A., Pearlmutter A. F. The human platelet vasopressin receptor and its intracellular messengers: key role of divalent cations. J Cardiovasc Pharmacol. 1987 Jul;10(1):24–29. doi: 10.1097/00005344-198707000-00004. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES