Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 Apr;99(4):774–778. doi: 10.1111/j.1476-5381.1990.tb13005.x

Effects of neuropeptide Y and calcitonin gene-related peptide on sheep coronary artery rings under oxygenated, hypoxic and simulated myocardial ischaemic conditions.

Y W Kwan 1, R M Wadsworth 1, K A Kane 1
PMCID: PMC1917533  PMID: 2361172

Abstract

1. The effects of calcitonin gene-related peptide (CGRP) and neuropeptide Y (NPY) were examined on sheep circumflex (2-2.5 mm o.d.) coronary artery rings, with and without endothelium, under oxygenated, hypoxic and simulated ischaemic conditions. The interaction between the vasoconstrictor effects of NPY and the thromboxane mimetic, U46619, was also studied. 2. Ischaemia was simulated by modification of the composition of the physiological salt solution by increasing potassium and H+, including lactate and reducing glucose and PO2. 3. Hypoxia alone and simulated ischaemia increased the maximum vasodilatation produced by CGRP. CGRP (30 nM) abolished and markedly reduced the contraction that was induced by hypoxia and simulated ischaemia respectively. 4. Hypoxia increased and simulated ischaemia reduced the contractile response to NPY in endothelium intact rings. When the endothelium was removed, NPY caused a contraction under ischaemic conditions only. The hypoxic and ischaemic-induced contractions were augmented by NPY (30 nM). 5. In the rings containing endothelium, NPY enhanced the contraction caused by U46619 during hypoxia only. In endothelium-denuded preparations, NPY increased or partially restored the contraction caused by U46619. 6. These results show that the responsiveness of coronary artery rings isolated from sheep to either CGRP or NPY is modified by hypoxia or simulated myocardial ischaemia.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andriantsitohaina R., Stoclet J. C. Potentiation by neuropeptide Y of vasoconstriction in rat resistance arteries. Br J Pharmacol. 1988 Oct;95(2):419–428. doi: 10.1111/j.1476-5381.1988.tb11662.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Daly R. N., Hieble J. P. Neuropeptide Y modulates adrenergic neurotransmission by an endothelium dependent mechanism. Eur J Pharmacol. 1987 Jun 26;138(3):445–446. doi: 10.1016/0014-2999(87)90486-9. [DOI] [PubMed] [Google Scholar]
  3. Edvinsson L., Ekblad E., Håkanson R., Wahlestedt C. Neuropeptide Y potentiates the effect of various vasoconstrictor agents on rabbit blood vessels. Br J Pharmacol. 1984 Oct;83(2):519–525. doi: 10.1111/j.1476-5381.1984.tb16516.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Franco-Cereceda A., Lundberg J. M., Dahlöf C. Neuropeptide Y and sympathetic control of heart contractility and coronary vascular tone. Acta Physiol Scand. 1985 Jul;124(3):361–369. doi: 10.1111/j.1748-1716.1985.tb07671.x. [DOI] [PubMed] [Google Scholar]
  5. Franco-Cereceda A., Lundberg J. M. Potent effects of neuropeptide Y and calcitonin gene-related peptide on human coronary vascular tone in vitro. Acta Physiol Scand. 1987 Sep;131(1):159–160. doi: 10.1111/j.1748-1716.1987.tb08219.x. [DOI] [PubMed] [Google Scholar]
  6. Franco-Cereceda A., Rudehill A., Lundberg J. M. Calcitonin gene-related peptide but not substance P mimics capsaicin-induced coronary vasodilation in the pig. Eur J Pharmacol. 1987 Oct 13;142(2):235–243. doi: 10.1016/0014-2999(87)90112-9. [DOI] [PubMed] [Google Scholar]
  7. Franco-Cereceda A., Saria A., Lundberg J. M. Ischaemia and changes in contractility induce release of calcitonin gene-related peptide but not neuropeptide Y from the isolated perfused guinea-pig heart. Acta Physiol Scand. 1987 Oct;131(2):319–320. doi: 10.1111/j.1748-1716.1987.tb08244.x. [DOI] [PubMed] [Google Scholar]
  8. Greenberg B., Rhoden K., Barnes P. Calcitonin gene-related peptide (CGRP) is a potent non-endothelium-dependent inhibitor of coronary vasomotor tone. Br J Pharmacol. 1987 Dec;92(4):789–794. doi: 10.1111/j.1476-5381.1987.tb11382.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hester R. K., Weiss G. B., Willerson J. T. Basis of pH-independent inhibitory effects of lactate on 45Ca movements and responses to KCl and PGF2 alpha in canine coronary arteries. Circ Res. 1980 Jun;46(6):771–779. doi: 10.1161/01.res.46.6.771. [DOI] [PubMed] [Google Scholar]
  10. Holman J. J., Craig R. K., Marshall I. Human alpha- and beta-CGRP and rat alpha-CGRP are coronary vasodilators in the rat. Peptides. 1986 Mar-Apr;7(2):231–235. doi: 10.1016/0196-9781(86)90218-4. [DOI] [PubMed] [Google Scholar]
  11. Kubota M., Moseley J. M., Butera L., Dusting G. J., MacDonald P. S., Martin T. J. Calcitonin gene-related peptide stimulates cyclic AMP formation in rat aortic smooth muscle cells. Biochem Biophys Res Commun. 1985 Oct 15;132(1):88–94. doi: 10.1016/0006-291x(85)90992-1. [DOI] [PubMed] [Google Scholar]
  12. Kwan Y. W., Wadsworth R. M., Kane K. A. Effects of hypoxia on the pharmacological responsiveness of isolated coronary artery rings from the sheep. Br J Pharmacol. 1989 Apr;96(4):849–856. doi: 10.1111/j.1476-5381.1989.tb11894.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kwan Y. W., Wadsworth R. M., Kane K. A. Hypoxia- and endothelium-mediated changes in the pharmacological responsiveness of circumflex coronary artery rings from the sheep. Br J Pharmacol. 1989 Apr;96(4):857–863. doi: 10.1111/j.1476-5381.1989.tb11895.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kwan Y. W., Wadsworth R. M., Kane K. A. Responsiveness of sheep isolated coronary artery rings under simulated myocardial ischaemia. Eur J Pharmacol. 1989 Sep 1;168(1):31–38. doi: 10.1016/0014-2999(89)90629-8. [DOI] [PubMed] [Google Scholar]
  15. Lundberg J. M., Franco-Cereceda A., Hua X., Hökfelt T., Fischer J. A. Co-existence of substance P and calcitonin gene-related peptide-like immunoreactivities in sensory nerves in relation to cardiovascular and bronchoconstrictor effects of capsaicin. Eur J Pharmacol. 1985 Feb 5;108(3):315–319. doi: 10.1016/0014-2999(85)90456-x. [DOI] [PubMed] [Google Scholar]
  16. Lundberg J. M., Terenius L., Hökfelt T., Goldstein M. High levels of neuropeptide Y in peripheral noradrenergic neurons in various mammals including man. Neurosci Lett. 1983 Dec 2;42(2):167–172. doi: 10.1016/0304-3940(83)90401-9. [DOI] [PubMed] [Google Scholar]
  17. Mulderry P. K., Ghatei M. A., Rodrigo J., Allen J. M., Rosenfeld M. G., Polak J. M., Bloom S. R. Calcitonin gene-related peptide in cardiovascular tissues of the rat. Neuroscience. 1985 Mar;14(3):947–954. doi: 10.1016/0306-4522(85)90156-3. [DOI] [PubMed] [Google Scholar]
  18. Neild T. O. Actions of neuropeptide Y on innervated and denervated rat tail arteries. J Physiol. 1987 May;386:19–30. doi: 10.1113/jphysiol.1987.sp016519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rooke T. W., Sparks H. V., Jr Effect of metabolic versus respiratory acid-base changes on isolated coronary artery and saphenous vein. Experientia. 1981;37(9):982–983. doi: 10.1007/BF01971792. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES