Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Jul;71(7):5189–5196. doi: 10.1128/jvi.71.7.5189-5196.1997

Adenovirus vector-infected cells can escape adenovirus antigen-specific cytotoxic T-lymphocyte killing in vivo.

S C Wadsworth 1, H Zhou 1, A E Smith 1, J M Kaplan 1
PMCID: PMC191754  PMID: 9188586

Abstract

The recent findings that prolonged expression of certain adenovirus (Ad) vector-encoded proteins, including human alpha1-antitrypsin (huAAT), mouse erythropoietin (EPO), and human factor IX, can be achieved in animals that do not mount an immune response to the reporter protein were obtained with mouse strains which have been shown to be capable of mounting a cellular immune response against Ad vector antigens. This suggests either that Ad vectors expressing nonimmunogenic transgenes fail to elicit a cellular immune response or that an Ad-specific cellular immune response does develop but is ineffective against cells expressing nonimmunogenic transgenes. Here we demonstrate that an Ad vector expressing huAAT administered by intravenous injection does stimulate an Ad-specific cellular immune response but that this response fails to abolish vector-directed gene expression in vivo. Moreover, expression of huAAT remained stable in animals stimulated by concurrent and multiple administrations of different Ad vectors or viruses. We also demonstrate prolonged expression of huAAT in CD1 mice transgenic for the huAAT gene, indicating that long-term expression is not restricted to C57BL/6 mice. These results demonstrate that under some circumstances, an Ad vector can direct prolonged expression of a nonimmunogenic transgene despite the presence of a robust Ad-specific cellular immune response.

Full Text

The Full Text of this article is available as a PDF (192.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander-Miller M. A., Leggatt G. R., Berzofsky J. A. Selective expansion of high- or low-avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4102–4107. doi: 10.1073/pnas.93.9.4102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barr D., Tubb J., Ferguson D., Scaria A., Lieber A., Wilson C., Perkins J., Kay M. A. Strain related variations in adenovirally mediated transgene expression from mouse hepatocytes in vivo: comparisons between immunocompetent and immunodeficient inbred strains. Gene Ther. 1995 Mar;2(2):151–155. [PubMed] [Google Scholar]
  3. Brantly M., Nukiwa T., Crystal R. G. Molecular basis of alpha-1-antitrypsin deficiency. Am J Med. 1988 Jun 24;84(6A):13–31. doi: 10.1016/0002-9343(88)90154-4. [DOI] [PubMed] [Google Scholar]
  4. Connelly S., Gardner J. M., Lyons R. M., McClelland A., Kaleko M. Sustained expression of therapeutic levels of human factor VIII in mice. Blood. 1996 Jun 1;87(11):4671–4677. [PubMed] [Google Scholar]
  5. Devinoy E., Thépot D., Stinnakre M. G., Fontaine M. L., Grabowski H., Puissant C., Pavirani A., Houdebine L. M. High level production of human growth hormone in the milk of transgenic mice: the upstream region of the rabbit whey acidic protein (WAP) gene targets transgene expression to the mammary gland. Transgenic Res. 1994 Mar;3(2):79–89. doi: 10.1007/BF01974085. [DOI] [PubMed] [Google Scholar]
  6. Gooding L. R. Specificities of killing by T lymphocytes generated against syngeneic SV40 transformants: studies employing recombinants within the H-2 complex. J Immunol. 1979 Mar;122(3):1002–1008. [PubMed] [Google Scholar]
  7. Gooding L. R. Specificities of killing by cytotoxic lymphocytes generated in vivo and in vitro to syngeneic SV40 transformed cells. J Immunol. 1977 Mar;118(3):920–927. [PubMed] [Google Scholar]
  8. Jaffe H. A., Danel C., Longenecker G., Metzger M., Setoguchi Y., Rosenfeld M. A., Gant T. W., Thorgeirsson S. S., Stratford-Perricaudet L. D., Perricaudet M. Adenovirus-mediated in vivo gene transfer and expression in normal rat liver. Nat Genet. 1992 Aug;1(5):372–378. doi: 10.1038/ng0892-372. [DOI] [PubMed] [Google Scholar]
  9. Kaplan J. M., Armentano D., Sparer T. E., Wynn S. G., Peterson P. A., Wadsworth S. C., Couture K. K., Pennington S. E., St George J. A., Gooding L. R. Characterization of factors involved in modulating persistence of transgene expression from recombinant adenovirus in the mouse lung. Hum Gene Ther. 1997 Jan 1;8(1):45–56. doi: 10.1089/hum.1997.8.1-45. [DOI] [PubMed] [Google Scholar]
  10. Kozarsky K. F., Jooss K., Donahee M., Strauss J. F., 3rd, Wilson J. M. Effective treatment of familial hypercholesterolaemia in the mouse model using adenovirus-mediated transfer of the VLDL receptor gene. Nat Genet. 1996 May;13(1):54–62. doi: 10.1038/ng0596-54. [DOI] [PubMed] [Google Scholar]
  11. Lee M. G., Abina M. A., Haddada H., Perricaudet M. The constitutive expression of the immunomodulatory gp19k protein in E1-, E3- adenoviral vectors strongly reduces the host cytotoxic T cell response against the vector. Gene Ther. 1995 Jun;2(4):256–262. [PubMed] [Google Scholar]
  12. Li Q., Kay M. A., Finegold M., Stratford-Perricaudet L. D., Woo S. L. Assessment of recombinant adenoviral vectors for hepatic gene therapy. Hum Gene Ther. 1993 Aug;4(4):403–409. doi: 10.1089/hum.1993.4.4-403. [DOI] [PubMed] [Google Scholar]
  13. Poller W., Schneider-Rasp S., Liebert U., Merklein F., Thalheimer P., Haack A., Schwaab R., Schmitt C., Brackmann H. H. Stabilization of transgene expression by incorporation of E3 region genes into an adenoviral factor IX vector and by transient anti-CD4 treatment of the host. Gene Ther. 1996 Jun;3(6):521–530. [PubMed] [Google Scholar]
  14. Ponder K. P., Gupta S., Leland F., Darlington G., Finegold M., DeMayo J., Ledley F. D., Chowdhury J. R., Woo S. L. Mouse hepatocytes migrate to liver parenchyma and function indefinitely after intrasplenic transplantation. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1217–1221. doi: 10.1073/pnas.88.4.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Quantin B., Perricaudet L. D., Tajbakhsh S., Mandel J. L. Adenovirus as an expression vector in muscle cells in vivo. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2581–2584. doi: 10.1073/pnas.89.7.2581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rawle F. C., Tollefson A. E., Wold W. S., Gooding L. R. Mouse anti-adenovirus cytotoxic T lymphocytes. Inhibition of lysis by E3 gp19K but not E3 14.7K. J Immunol. 1989 Sep 15;143(6):2031–2037. [PubMed] [Google Scholar]
  17. Rich D. P., Couture L. A., Cardoza L. M., Guiggio V. M., Armentano D., Espino P. C., Hehir K., Welsh M. J., Smith A. E., Gregory R. J. Development and analysis of recombinant adenoviruses for gene therapy of cystic fibrosis. Hum Gene Ther. 1993 Aug;4(4):461–476. doi: 10.1089/hum.1993.4.4-461. [DOI] [PubMed] [Google Scholar]
  18. Smith T. A., Mehaffey M. G., Kayda D. B., Saunders J. M., Yei S., Trapnell B. C., McClelland A., Kaleko M. Adenovirus mediated expression of therapeutic plasma levels of human factor IX in mice. Nat Genet. 1993 Dec;5(4):397–402. doi: 10.1038/ng1293-397. [DOI] [PubMed] [Google Scholar]
  19. Thépot D., Devinoy E., Fontaine M. L., Stinnakre M. G., Massoud M., Kann G., Houdebine L. M. Rabbit whey acidic protein gene upstream region controls high-level expression of bovine growth hormone in the mammary gland of transgenic mice. Mol Reprod Dev. 1995 Nov;42(3):261–267. doi: 10.1002/mrd.1080420302. [DOI] [PubMed] [Google Scholar]
  20. Tripathy S. K., Black H. B., Goldwasser E., Leiden J. M. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat Med. 1996 May;2(5):545–550. doi: 10.1038/nm0596-545. [DOI] [PubMed] [Google Scholar]
  21. Wold W. S., Gooding L. R. Adenovirus region E3 proteins that prevent cytolysis by cytotoxic T cells and tumor necrosis factor. Mol Biol Med. 1989 Oct;6(5):433–452. [PubMed] [Google Scholar]
  22. Yang Y., Ertl H. C., Wilson J. M. MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses. Immunity. 1994 Aug;1(5):433–442. doi: 10.1016/1074-7613(94)90074-4. [DOI] [PubMed] [Google Scholar]
  23. Yang Y., Li Q., Ertl H. C., Wilson J. M. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol. 1995 Apr;69(4):2004–2015. doi: 10.1128/jvi.69.4.2004-2015.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yang Y., Nunes F. A., Berencsi K., Furth E. E., Gönczöl E., Wilson J. M. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4407–4411. doi: 10.1073/pnas.91.10.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zhou H., O'Neal W., Morral N., Beaudet A. L. Development of a complementing cell line and a system for construction of adenovirus vectors with E1 and E2a deleted. J Virol. 1996 Oct;70(10):7030–7038. doi: 10.1128/jvi.70.10.7030-7038.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES