Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 Apr;99(4):753–761. doi: 10.1111/j.1476-5381.1990.tb13002.x

Rat hippocampal muscarinic autoreceptors are similar to the M2 (cardiac) subtype: comparison with hippocampal M1, atrial M2 and ileal M3 receptors.

M H Richards 1
PMCID: PMC1917567  PMID: 1694463

Abstract

1. Affinity constants for 15 non-selective or putatively selective muscarinic antagonists were determined at muscarinic autoreceptors and postsynaptic receptors (linked to phosphatidylinositol (PI) hydrolysis) in rat hippocampal slices, at muscarinic receptors mediating contractility in guinea-pig atria or ileal smooth muscle and at binding sites in rat cerebral cortical membranes labelled with [3H]-1-quinuclidinyl benzilate or [3H]-pirenzepine. 2. Comparison of the affinities of these antagonists at central M1 receptors (inositol-monophosphate formation in rat hippocampal slices) with their affinities at peripheral M1 receptors (inhibition by McN-A-343 of electrically stimulated twitches in rabbit vas deferens) provides support for the suggestion that these receptors may differ pharmacologically. 3. Comparison of affinity constants obtained by displacement of specifically bound [3H]-pirenzepine from rat cerebral cortical membranes with those obtained in functional tests showed poor correlations between affinities for binding sites and for functional atrial receptors or for hippocampal autoreceptors. A significant correlation was found between affinities for [3H]-pirenzepine binding and those determined at muscarinic receptors linked to PI turnover in rat hippocampus. A significant correlation was also obtained between the affinities for specific [3H]-pirenzepine binding sites in cortical membranes and the affinities at ileal receptors. 4. Comparison of the affinity values for muscarinic autoreceptors in rat hippocampus with affinity values obtained from in vitro models of muscarinic receptor subtypes showed no significant correlations between these autoreceptors and either M1 or M3 receptors. A significant correlation was found between antagonist affinities for hippocampal autoreceptors and muscarinic receptors in the heart. Therefore, muscarinic autoreceptors in rat hippocampus are pharmacologically similar to the M2 (cardiac) muscarinic receptor subtype.

Full text

PDF
753

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARUNLAKSHANA O., SCHILD H. O. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959 Mar;14(1):48–58. doi: 10.1111/j.1476-5381.1959.tb00928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anwar-ul S., Gilani H., Cobbin L. B. The cardio-selectivity of himbacine: a muscarine receptor antagonist. Naunyn Schmiedebergs Arch Pharmacol. 1986 Jan;332(1):16–20. doi: 10.1007/BF00633191. [DOI] [PubMed] [Google Scholar]
  3. Barlow R. B., Shepherd M. K. A search for selective antagonists at M2 muscarinic receptors. Br J Pharmacol. 1985 Jun;85(2):427–435. doi: 10.1111/j.1476-5381.1985.tb08878.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barnes P. J., Minette P., Maclagan J. Muscarinic receptor subtypes in airways. Trends Pharmacol Sci. 1988 Nov;9(11):412–416. doi: 10.1016/0165-6147(88)90069-7. [DOI] [PubMed] [Google Scholar]
  5. Bloom J. W., Halonen M., Seaver N. A., Yamamura H. I. Heterogeneity of the M1 muscarinic receptor subtype between peripheral lung and cerebral cortex demonstrated by the selective antagonist AF-DX 116. Life Sci. 1987 Jul 27;41(4):491–496. doi: 10.1016/0024-3205(87)90226-8. [DOI] [PubMed] [Google Scholar]
  6. Bonner T. I., Buckley N. J., Young A. C., Brann M. R. Identification of a family of muscarinic acetylcholine receptor genes. Science. 1987 Jul 31;237(4814):527–532. doi: 10.1126/science.3037705. [DOI] [PubMed] [Google Scholar]
  7. Bonner T. I. The molecular basis of muscarinic receptor diversity. Trends Neurosci. 1989 Apr;12(4):148–151. doi: 10.1016/0166-2236(89)90054-4. [DOI] [PubMed] [Google Scholar]
  8. Bonner T. I., Young A. C., Brann M. R., Buckley N. J. Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron. 1988 Jul;1(5):403–410. doi: 10.1016/0896-6273(88)90190-0. [DOI] [PubMed] [Google Scholar]
  9. Brown E., Kendall D. A., Nahorski S. R. Inositol phospholipid hydrolysis in rat cerebral cortical slices: I. Receptor characterisation. J Neurochem. 1984 May;42(5):1379–1387. doi: 10.1111/j.1471-4159.1984.tb02798.x. [DOI] [PubMed] [Google Scholar]
  10. Buckley N. J., Bonner T. I., Brann M. R. Localization of a family of muscarinic receptor mRNAs in rat brain. J Neurosci. 1988 Dec;8(12):4646–4652. doi: 10.1523/JNEUROSCI.08-12-04646.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Buckley N. J., Bonner T. I., Buckley C. M., Brann M. R. Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol. 1989 Apr;35(4):469–476. [PubMed] [Google Scholar]
  12. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  13. Doods H. N., Mathy M. J., Davidesko D., van Charldorp K. J., de Jonge A., van Zwieten P. A. Selectivity of muscarinic antagonists in radioligand and in vivo experiments for the putative M1, M2 and M3 receptors. J Pharmacol Exp Ther. 1987 Jul;242(1):257–262. [PubMed] [Google Scholar]
  14. Eglen R. M., Montgomery W. W., Whiting R. L. Negative and positive inotropic responses to muscarinic agonists in guinea pig and rat atria in vitro. J Pharmacol Exp Ther. 1988 Dec;247(3):911–917. [PubMed] [Google Scholar]
  15. Eglen R. M., Whiting R. L. Competitive and non-competitive antagonism exhibited by 'selective' antagonists at atrial and ileal muscarinic receptor subtypes. Br J Pharmacol. 1987 Apr;90(4):701–707. doi: 10.1111/j.1476-5381.1987.tb11223.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Eglen R. M., Whiting R. L. Muscarinic receptor subtypes: a critique of the current classification and a proposal for a working nomenclature. J Auton Pharmacol. 1986 Dec;6(4):323–346. doi: 10.1111/j.1474-8673.1986.tb00661.x. [DOI] [PubMed] [Google Scholar]
  17. Ek B., Nahorski S. Muscarinic receptor coupling to inositol phospholipid metabolism in guinea-pig cerebral cortex, parotid gland and ileal smooth muscle. Biochem Pharmacol. 1988 Dec 1;37(23):4461–4467. doi: 10.1016/0006-2952(88)90661-2. [DOI] [PubMed] [Google Scholar]
  18. Eltz M., Gmelin G., Wess J., Strohmann C., Tacke R., Mutschler E., Lambrecht G. Presynaptic muscarinic receptors mediating inhibition of neurogenic contractions in rabbit vas deferens are of the ganglionic M1-type. Eur J Pharmacol. 1988 Dec 13;158(3):233–242. doi: 10.1016/0014-2999(88)90072-6. [DOI] [PubMed] [Google Scholar]
  19. Eltze M., Gönne S., Riedel R., Schlotke B., Schudt C., Simon W. A. Pharmacological evidence for selective inhibition of gastric acid secretion by telenzepine, a new antimuscarinic drug. Eur J Pharmacol. 1985 Jun 7;112(2):211–224. doi: 10.1016/0014-2999(85)90498-4. [DOI] [PubMed] [Google Scholar]
  20. Eltze M. Muscarinic M1- and M2-receptors mediating opposite effects on neuromuscular transmission in rabbit vas deferens. Eur J Pharmacol. 1988 Jul 7;151(2):205–221. doi: 10.1016/0014-2999(88)90801-1. [DOI] [PubMed] [Google Scholar]
  21. Fisher S. K., Boast C. A., Agranoff B. W. The muscarinic stimulation of phospholipid labeling in hippocampus is independent of its cholinergic input. Brain Res. 1980 May 5;189(1):284–288. doi: 10.1016/0006-8993(80)90030-x. [DOI] [PubMed] [Google Scholar]
  22. Giachetti A., Giraldo E., Ladinsky H., Montagna E. Binding and functional profiles of the selective M1 muscarinic receptor antagonists trihexyphenidyl and dicyclomine. Br J Pharmacol. 1986 Sep;89(1):83–90. doi: 10.1111/j.1476-5381.1986.tb11123.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Giachetti A., Micheletti R., Montagna E. Cardioselective profile of AF-DX 116, a muscarine M2 receptor antagonist. Life Sci. 1986 May 5;38(18):1663–1672. doi: 10.1016/0024-3205(86)90410-8. [DOI] [PubMed] [Google Scholar]
  24. Gil D. W., Wolfe B. B. Pirenzepine distinguishes between muscarinic receptor-mediated phosphoinositide breakdown and inhibition of adenylate cyclase. J Pharmacol Exp Ther. 1985 Mar;232(3):608–616. [PubMed] [Google Scholar]
  25. Giraldo E., Hammer R., Ladinsky H. Distribution of muscarinic receptor subtypes in rat brain as determined in binding studies with AF-DX 116 and pirenzepine. Life Sci. 1987 Mar 2;40(9):833–840. doi: 10.1016/0024-3205(87)90031-2. [DOI] [PubMed] [Google Scholar]
  26. Goyal R. K. Identification, localization and classification of muscarinic receptor subtypes in the gut. Life Sci. 1988;43(26):2209–2220. doi: 10.1016/0024-3205(88)90414-6. [DOI] [PubMed] [Google Scholar]
  27. Hammer R., Berrie C. P., Birdsall N. J., Burgen A. S., Hulme E. C. Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature. 1980 Jan 3;283(5742):90–92. doi: 10.1038/283090a0. [DOI] [PubMed] [Google Scholar]
  28. KAKIMOTO Y., ARMSTRONG M. D. The phenolic amines of human urine. J Biol Chem. 1962 Jan;237:208–214. [PubMed] [Google Scholar]
  29. Kunysz E. L., Michel A. D., Whiting R. L. Functional and direct binding studies using subtype selective muscarinic receptor antagonists. Br J Pharmacol. 1988 Mar;93(3):491–500. doi: 10.1111/j.1476-5381.1988.tb10303.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Marchi M., Raiteri M. On the presence in the cerebral cortex of muscarinic receptor subtypes which differ in neuronal localization, function and pharmacological properties. J Pharmacol Exp Ther. 1985 Oct;235(1):230–233. [PubMed] [Google Scholar]
  31. Mitchelson F. Muscarinic receptor differentiation. Pharmacol Ther. 1988;37(3):357–423. doi: 10.1016/0163-7258(88)90005-8. [DOI] [PubMed] [Google Scholar]
  32. Nilvebrant L., Sparf B. Dicyclomine, benzhexol and oxybutynine distinguish between subclasses of muscarinic binding sites. Eur J Pharmacol. 1986 Apr 9;123(1):133–143. doi: 10.1016/0014-2999(86)90697-7. [DOI] [PubMed] [Google Scholar]
  33. Nomura S., Zorn S. H., Enna S. J. Selective interaction of tricyclic antidepressants with a subclass of rat brain cholinergic muscarinic receptors. Life Sci. 1987 May 4;40(18):1751–1760. doi: 10.1016/0024-3205(87)90085-3. [DOI] [PubMed] [Google Scholar]
  34. Nordström O., Bartfai T. Muscarinic autoreceptor regulates acetylcholine release in rat hippocampus: in vitro evidence. Acta Physiol Scand. 1980 Apr;108(4):347–353. doi: 10.1111/j.1748-1716.1980.tb06543.x. [DOI] [PubMed] [Google Scholar]
  35. Peralta E. G., Ashkenazi A., Winslow J. W., Ramachandran J., Capon D. J. Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature. 1988 Aug 4;334(6181):434–437. doi: 10.1038/334434a0. [DOI] [PubMed] [Google Scholar]
  36. Raiteri M., Leardi R., Marchi M. Heterogeneity of presynaptic muscarinic receptors regulating neurotransmitter release in the rat brain. J Pharmacol Exp Ther. 1984 Jan;228(1):209–214. [PubMed] [Google Scholar]
  37. Richards M. H. Efflux of 3H-5-hydroxytryptamine from rat hypothalamic slices by continuous electrical stimulation: frequency-dependent responses to serotonergic antagonists and 5-hydroxytryptamine. Naunyn Schmiedebergs Arch Pharmacol. 1985 Jun;329(4):359–366. doi: 10.1007/BF00496368. [DOI] [PubMed] [Google Scholar]
  38. Richardson I. W., Szerb J. C. The release of labelled acetylcholine and choline from cerebral cortical slices stimulated electrically. Br J Pharmacol. 1974 Dec;52(4):499–507. doi: 10.1111/j.1476-5381.1974.tb09717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rooney T. A., Nahorski S. R. Regional characterization of agonist and depolarization-induced phosphoinositide hydrolysis in rat brain. J Pharmacol Exp Ther. 1986 Dec;239(3):873–880. [PubMed] [Google Scholar]
  40. Rossor M. N., Iversen L. L., Reynolds G. P., Mountjoy C. Q., Roth M. Neurochemical characteristics of early and late onset types of Alzheimer's disease. Br Med J (Clin Res Ed) 1984 Mar 31;288(6422):961–964. doi: 10.1136/bmj.288.6422.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schlicker E., Göthert M. Antagonistic properties of quipazine at presynaptic serotonin receptors and alpha-adrenoceptors in rat brain cortex slices. Naunyn Schmiedebergs Arch Pharmacol. 1981 Nov;317(3):204–208. doi: 10.1007/BF00503817. [DOI] [PubMed] [Google Scholar]
  42. Schoffelmeer A. N., Van Vliet B. J., Wardeh G., Mulder A. H. Muscarine receptor-mediated modulation of [3H]dopamine and [14C]acetylcholine release from rat neostriatal slices: selective antagonism by gallamine but not pirenzepine. Eur J Pharmacol. 1986 Sep 9;128(3):291–294. doi: 10.1016/0014-2999(86)90781-8. [DOI] [PubMed] [Google Scholar]
  43. Schreiber G., Sokolovsky M. Muscarinic receptor heterogeneity revealed by interaction with bretylium tosylate. Different ligand-receptor conformations versus different receptor subclasses. Mol Pharmacol. 1985 Jan;27(1):27–31. [PubMed] [Google Scholar]
  44. Smith C. J., Court J. A., Keith A. B., Perry E. K. Increases in muscarinic stimulated hydrolysis of inositol phospholipids in rat hippocampus following cholinergic deafferentation are not parallelled by alterations in cholinergic receptor density. Brain Res. 1989 Apr 24;485(2):317–324. doi: 10.1016/0006-8993(89)90576-3. [DOI] [PubMed] [Google Scholar]
  45. Teyler T. J. Brain slice preparation: hippocampus. Brain Res Bull. 1980 Jul-Aug;5(4):391–403. doi: 10.1016/s0361-9230(80)80009-8. [DOI] [PubMed] [Google Scholar]
  46. Tien X. Y., Wallace L. J. Trihexyphenidyl--further evidence for muscarinic receptor subclassification. Biochem Pharmacol. 1985 Feb 15;34(4):588–590. doi: 10.1016/0006-2952(85)90196-0. [DOI] [PubMed] [Google Scholar]
  47. Watson M., Roeske W. R., Yamamura H. I. [3H]pirenzepine and (-)-[3H]quinuclidinyl benzilate binding to rat cerebral cortical and cardiac muscarinic cholinergic sites. II. Characterization and regulation of antagonist binding to putative muscarinic subtypes. J Pharmacol Exp Ther. 1986 May;237(2):419–427. [PubMed] [Google Scholar]
  48. Zwagemakers J. M., Claassen V. Pharmacology of secoverine, a new spasmolytic agent with specific antimuscarinic properties. Part 1: Antimuscarinic and spasmolytic effects. Arzneimittelforschung. 1980;30(9):1517–1526. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES