Abstract
1. The effects of intracisternal (i.c.) application of putative 5-hydroxytryptamine (5-HT)1A antagonists on the reflex bradycardia evoked by injection of phenylbiguanide (i.v.) were investigated in anaesthetized, atenolol-pretreated rats. 2. Intracisternal application of spiperone (100 micrograms kg-1) reversibly attenuated the reflex bradycardia whilst the same dose given i.v. had no effect. The bradycardia was also attenuated by i.c. methiothepin (200 micrograms kg-1), (+/-)-pindolol (100 micrograms kg-1) and buspirone (200 micrograms kg-1) but was not attenuated by antagonists selective for alpha 1-adrenoceptors (alfuzosin; 100 micrograms kg-1), 5-HT2-receptors (BW 501C67; 100 micrograms kg-1) or dopamine D2-receptors ((-)-sulpiride; 100 micrograms kg-1) given i.c. 3. It is concluded that the 5-HT1A-receptor antagonist action of intracisternally applied spiperone, methiothepin, (+/-)-pindolol and buspirone is responsible for the ability of these drugs to attenuate reversibly the excitation of cardiac vagal motoneurones caused by activation of the von Bezold-Jarisch reflex.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bogle R. G., Ramage A. G. Evidence that the reflex vagal bradycardia caused by i.v. phenyl biguanide is mediated by central 5-HT1A receptors. Br J Pharmacol. 1989 Dec;98 (Suppl):811P–811P. [PubMed] [Google Scholar]
- Brown M. J., Harland D. B-HT 958 lowers blood pressure and heart rate in the rat through stimulation of dopamine receptors. Br J Pharmacol. 1986 Feb;87(2):361–370. doi: 10.1111/j.1476-5381.1986.tb10825.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CERVONI P., BERTINO J. R., GEIGER L. E. MEDULLARY VAGAL EFFECTS OF D-LYSERGIC ACID DIETHYLAMIDE IN THE DECEREBRATE CAT. Nature. 1963 Aug 17;199:700–701. doi: 10.1038/199700a0. [DOI] [PubMed] [Google Scholar]
- Cherqui C., Dabiré H., Fournier B., Schmitt H. Participation of sympathetic and vagal tones in the hypotensive and bradycardic effects of some 5-HT1-like receptor agonists in the rat. Arch Int Pharmacodyn Ther. 1988 Nov-Dec;296:18–28. [PubMed] [Google Scholar]
- DAWES G. S., MOTT J. C. Circulatory and respiratory reflexes caused by aromatic guanidines. Br J Pharmacol Chemother. 1950 Mar;5(1):65–76. doi: 10.1111/j.1476-5381.1950.tb00578.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalton D. W. The cardiovascular effects of centrally administered 5-hydroxytryptamine in the conscious normotensive and hypertensive rat. J Auton Pharmacol. 1986 Mar;6(1):67–75. doi: 10.1111/j.1474-8673.1986.tb00632.x. [DOI] [PubMed] [Google Scholar]
- Direct evidence for an interaction of beta-adrenergic blockers with the 5-HT receptor. Nature. 1977 May 19;267(5608):289–290. doi: 10.1038/267289a0. [DOI] [PubMed] [Google Scholar]
- Feniuk W., Humphrey P. P., Perren M. J., Watts A. D. A comparison of 5-hydroxytryptamine receptors mediating contraction in rabbit aorta and dog saphenous vein: evidence for different receptor types obtained by use of selective agonists and antagonists. Br J Pharmacol. 1985 Nov;86(3):697–704. doi: 10.1111/j.1476-5381.1985.tb08948.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fozard J. R. Mechanism of the hypotensive effect of ketanserin. J Cardiovasc Pharmacol. 1982 Sep-Oct;4(5):829–838. doi: 10.1097/00005344-198209000-00020. [DOI] [PubMed] [Google Scholar]
- Gaudin-Chazal G., Portalier P., Barrit M. C., Puizillout J. J. Serotonin-like immunoreactivity in paraffin-sections of the nodose ganglia of the cat. Neurosci Lett. 1982 Nov 30;33(2):169–172. doi: 10.1016/0304-3940(82)90246-4. [DOI] [PubMed] [Google Scholar]
- Gradin K., Pettersson A., Hedner T., Persson B. Acute administration of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a selective 5-HT-receptor agonist, causes a biphasic blood pressure response and a bradycardia in the normotensive Sprague-Dawley rat and in the spontaneously hypertensive rat. J Neural Transm. 1985;62(3-4):305–319. doi: 10.1007/BF01252244. [DOI] [PubMed] [Google Scholar]
- Hoyer D. Functional correlates of serotonin 5-HT1 recognition sites. J Recept Res. 1988;8(1-4):59–81. doi: 10.3109/10799898809048978. [DOI] [PubMed] [Google Scholar]
- Kalia M., Sullivan J. M. Brainstem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol. 1982 Nov 1;211(3):248–265. doi: 10.1002/cne.902110304. [DOI] [PubMed] [Google Scholar]
- Katsura I. Determination of bacteriophage lambda tail length by a protein ruler. Nature. 1987 May 7;327(6117):73–75. doi: 10.1038/327073a0. [DOI] [PubMed] [Google Scholar]
- Mawson C., Whittington H. Evaluation of the peripheral and central antagonistic activities against 5-hydroxytryptamine of some new agents. Br J Pharmacol. 1970 May;39(1):223P–224P. [PMC free article] [PubMed] [Google Scholar]
- Nosaka S., Yamamoto T., Yasunaga K. Localization of vagal cardioinhibitory preganglionic neurons with rat brain stem. J Comp Neurol. 1979 Jul 1;186(1):79–92. doi: 10.1002/cne.901860106. [DOI] [PubMed] [Google Scholar]
- Pazos A., Cortés R., Palacios J. M. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res. 1985 Nov 4;346(2):231–249. doi: 10.1016/0006-8993(85)90857-1. [DOI] [PubMed] [Google Scholar]
- Pazos A., Palacios J. M. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res. 1985 Nov 4;346(2):205–230. doi: 10.1016/0006-8993(85)90856-x. [DOI] [PubMed] [Google Scholar]
- Pratt G. D., Bowery N. G. The 5-HT3 receptor ligand, [3H]BRL 43694, binds to presynaptic sites in the nucleus tractus solitarius of the rat. Neuropharmacology. 1989 Dec;28(12):1367–1376. doi: 10.1016/0028-3908(89)90012-9. [DOI] [PubMed] [Google Scholar]
- Ramage A. G., Fozard J. R. Evidence that the putative 5-HT1A receptor agonists, 8-OH-DPAT and ipsapirone, have a central hypotensive action that differs from that of clonidine in anaesthetised cats. Eur J Pharmacol. 1987 Jun 19;138(2):179–191. doi: 10.1016/0014-2999(87)90431-6. [DOI] [PubMed] [Google Scholar]
- Ramage A. G., Wouters W., Bevan P. Evidence that the novel antihypertensive agent, flesinoxan, causes differential sympathoinhibition and also increases vagal tone by a central action. Eur J Pharmacol. 1988 Jul 14;151(3):373–379. doi: 10.1016/0014-2999(88)90533-x. [DOI] [PubMed] [Google Scholar]
- Schoeffter P., Hoyer D. Centrally acting hypotensive agents with affinity for 5-HT1A binding sites inhibit forskolin-stimulated adenylate cyclase activity in calf hippocampus. Br J Pharmacol. 1988 Nov;95(3):975–985. doi: 10.1111/j.1476-5381.1988.tb11728.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sprouse J. S., Aghajanian G. K. Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse. 1987;1(1):3–9. doi: 10.1002/syn.890010103. [DOI] [PubMed] [Google Scholar]
- Steinbusch H. W. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience. 1981;6(4):557–618. doi: 10.1016/0306-4522(81)90146-9. [DOI] [PubMed] [Google Scholar]
- Stoof J. C., Kebabian J. W. Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci. 1984 Dec 3;35(23):2281–2296. doi: 10.1016/0024-3205(84)90519-8. [DOI] [PubMed] [Google Scholar]
- Street J. A., Hemsworth B. A., Roach A. G., Day M. D. Tissue levels of several radiolabelled beta-adrenoceptor antagonists after intravenous administration in rats. Arch Int Pharmacodyn Ther. 1979 Feb;237(2):180–190. [PubMed] [Google Scholar]