Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 Aug;100(4):793–799. doi: 10.1111/j.1476-5381.1990.tb14094.x

Behavioural evidence for a functional interaction between central 5-HT2 and 5-HT1A receptors.

L I Backus 1, T Sharp 1, D G Grahame-Smith 1
PMCID: PMC1917590  PMID: 2145051

Abstract

1. The possibility of 5-HT2 receptor modulation of central 5-HT1A receptor function has been examined using the 5-hydroxytryptamine (5-HT) behavioural syndrome induced by 5-HT1A receptor active drugs in rats. 2. The 5-HT2/5-HTIC antagonist ritanserin (0.1-2 mg kg-1) increased the 5-HT behavioural syndrome induced by submaximally effective doses of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) and gepirone. 3. Pretreatment with the 5-HT2/5-HT1C antagonist ICI 170,809 (0.25-5 mg kg-1) also enhanced the behavioural syndrome induced by 8-OH-DPAT or 5-MeODMT. 4. The 5-HT2/alpha 1-adrenoceptor antagonist ketanserin in a low dose (0.25 mg kg-1) significantly increased the 5-HT behavioural syndrome induced by 8-OH-DPAT or 5-MeODMT, while in a higher dose (2.5 mg kg-1) this drug decreased the response. Experiments with prazosin indicate that the higher dose of ketanserin might reduce the 5-HT behavioural syndrome through blockade of alpha 1-adrenoceptors. 5. Ritanserin and ICI 170,809 had no effect on apomorphine-induced stereotypy or hyperactivity, indicating that these drugs do not produce non-specific behavioural activation. 6. Ritanserin and ICI 170,809 inhibited quipazine-induced wet dog shakes at doses similar to those enhancing the 5-HT behavioural syndrome. 7. We suggest that ritanserin, ICI 170,809 and ketanserin enhance 5-HT1A agonist-induced behaviour through blockade of an inhibitory 5-HT2 receptor regulating or coupled to 5-HT1A receptor-mediated function.

Full text

PDF
793

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnt J., Hyttel J. Facilitation of 8-OHDPAT-induced forepaw treading of rats by the 5-HT2 agonist DOI. Eur J Pharmacol. 1989 Feb 14;161(1):45–51. doi: 10.1016/0014-2999(89)90178-7. [DOI] [PubMed] [Google Scholar]
  2. Bedard P., Pycock C. J. "Wet-dog" shake behaviour in the rat: a possible quantitative model of central 5-hydroxytryptamine activity. Neuropharmacology. 1977 Oct;16(10):663–670. doi: 10.1016/0028-3908(77)90117-4. [DOI] [PubMed] [Google Scholar]
  3. Blier P., Steinberg S., Chaput Y., de Montigny C. Electrophysiological assessment of putative antagonists of 5-hydroxytryptamine receptors: a single-cell study in the rat dorsal raphe nucleus. Can J Physiol Pharmacol. 1989 Feb;67(2):98–105. doi: 10.1139/y89-017. [DOI] [PubMed] [Google Scholar]
  4. Bradley P. B., Engel G., Feniuk W., Fozard J. R., Humphrey P. P., Middlemiss D. N., Mylecharane E. J., Richardson B. P., Saxena P. R. Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology. 1986 Jun;25(6):563–576. doi: 10.1016/0028-3908(86)90207-8. [DOI] [PubMed] [Google Scholar]
  5. Colpaert F. C., Janssen P. A. The head-twitch response to intraperitoneal injection of 5-hydroxytryptophan in the rat: antagonist effects of purported 5-hydroxytryptamine antagonists and of pirenperone, an LSD antagonist. Neuropharmacology. 1983 Aug;22(8):993–1000. doi: 10.1016/0028-3908(83)90215-0. [DOI] [PubMed] [Google Scholar]
  6. Colpaert F. C., Meert T. F., Niemegeers C. J., Janssen P. A. Behavioral and 5-HT antagonist effects of ritanserin: a pure and selective antagonist of LSD discrimination in rat. Psychopharmacology (Berl) 1985;86(1-2):45–54. doi: 10.1007/BF00431683. [DOI] [PubMed] [Google Scholar]
  7. Creese I., Iversen S. D. Blockage of amphetamine induced motor stimulation and stereotypy in the adult rat following neonatal treatment with 6-hydroxydopamine. Brain Res. 1973 Jun 15;55(2):369–382. doi: 10.1016/0006-8993(73)90302-8. [DOI] [PubMed] [Google Scholar]
  8. Deakin J. F., Green A. R. The effects of putative 5-hydroxytryptamine antagonists on the behaviour produced by administration of tranylcypromine and L-tryptophan or tranylcypromine and L-DOPA to rats. Br J Pharmacol. 1978 Oct;64(2):201–209. doi: 10.1111/j.1476-5381.1978.tb17290.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eison A. S., Eison M. S., Stanley M., Riblet L. A. Serotonergic mechanisms in the behavioral effects of buspirone and gepirone. Pharmacol Biochem Behav. 1986 Mar;24(3):701–707. doi: 10.1016/0091-3057(86)90577-0. [DOI] [PubMed] [Google Scholar]
  10. Goodwin G. M., Green A. R. A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT1 and 5-HT2 receptors. Br J Pharmacol. 1985 Mar;84(3):743–753. doi: 10.1111/j.1476-5381.1985.tb16157.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grahame-Smith D. G. Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and L-tryptophan. J Neurochem. 1971 Jun;18(6):1053–1066. doi: 10.1111/j.1471-4159.1971.tb12034.x. [DOI] [PubMed] [Google Scholar]
  12. Green A. R., Grahame-Smith D. G. The role of brain dopamine in the hyperactivity syndrome produced by increased 5-hydroxytryptamine synthesis in rats. Neuropharmacology. 1974 Nov;13(10-11):949–959. doi: 10.1016/0028-3908(74)90086-0. [DOI] [PubMed] [Google Scholar]
  13. Green A. R., O'Shaughnessy K., Hammond M., Schächter M., Grahame-Smith D. G. Inhibition of 5-hydroxytryptamine-mediated behaviour by the putative 5-HT2 antagonist pirenperone. Neuropharmacology. 1983 May;22(5):573–578. doi: 10.1016/0028-3908(83)90147-8. [DOI] [PubMed] [Google Scholar]
  14. Herrick-Davis K., Titeler M. Detection and characterization of the serotonin 5-HT 1D receptor in rat and human brain. J Neurochem. 1988 May;50(5):1624–1631. doi: 10.1111/j.1471-4159.1988.tb03052.x. [DOI] [PubMed] [Google Scholar]
  15. Hoyer D. Functional correlates of serotonin 5-HT1 recognition sites. J Recept Res. 1988;8(1-4):59–81. doi: 10.3109/10799898809048978. [DOI] [PubMed] [Google Scholar]
  16. Hoyer D. Molecular pharmacology and biology of 5-HT1C receptors. Trends Pharmacol Sci. 1988 Mar;9(3):89–94. doi: 10.1016/0165-6147(88)90174-5. [DOI] [PubMed] [Google Scholar]
  17. Jacobs B. L. An animal behavior model for studying central serotonergic synapses. Life Sci. 1976 Sep 15;19(6):777–785. doi: 10.1016/0024-3205(76)90303-9. [DOI] [PubMed] [Google Scholar]
  18. Kennett G. A., Curzon G. Evidence that mCPP may have behavioural effects mediated by central 5-HT1C receptors. Br J Pharmacol. 1988 May;94(1):137–147. doi: 10.1111/j.1476-5381.1988.tb11508.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kilpatrick G. J., Jones B. J., Tyers M. B. Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature. 1987 Dec 24;330(6150):746–748. doi: 10.1038/330746a0. [DOI] [PubMed] [Google Scholar]
  20. Leysen J. E., Awouters F., Kennis L., Laduron P. M., Vandenberk J., Janssen P. A. Receptor binding profile of R 41 468, a novel antagonist at 5-HT2 receptors. Life Sci. 1981 Mar 2;28(9):1015–1022. doi: 10.1016/0024-3205(81)90747-5. [DOI] [PubMed] [Google Scholar]
  21. Leysen J. E., Gommeren W., Van Gompel P., Wynants J., Janssen P. F., Laduron P. M. Receptor-binding properties in vitro and in vivo of ritanserin: A very potent and long acting serotonin-S2 antagonist. Mol Pharmacol. 1985 Jun;27(6):600–611. [PubMed] [Google Scholar]
  22. Middlemiss D. N., Fozard J. R. 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur J Pharmacol. 1983 May 20;90(1):151–153. doi: 10.1016/0014-2999(83)90230-3. [DOI] [PubMed] [Google Scholar]
  23. Ortmann R., Bischoff S., Radeke E., Buech O., Delini-Stula A. Correlations between different measures of antiserotonin activity of drugs. Study with neuroleptics and serotonin receptor blockers. Naunyn Schmiedebergs Arch Pharmacol. 1982 Dec;321(4):265–270. doi: 10.1007/BF00498511. [DOI] [PubMed] [Google Scholar]
  24. Pazos A., Hoyer D., Palacios J. M. The binding of serotonergic ligands to the porcine choroid plexus: characterization of a new type of serotonin recognition site. Eur J Pharmacol. 1984 Nov 27;106(3):539–546. doi: 10.1016/0014-2999(84)90057-8. [DOI] [PubMed] [Google Scholar]
  25. Peroutka S. J. Selective interaction of novel anxiolytics with 5-hydroxytryptamine1A receptors. Biol Psychiatry. 1985 Sep;20(9):971–979. doi: 10.1016/0006-3223(85)90194-5. [DOI] [PubMed] [Google Scholar]
  26. Peroutka S. J., Snyder S. H. Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol Pharmacol. 1979 Nov;16(3):687–699. [PubMed] [Google Scholar]
  27. Shannon M., Battaglia G., Glennon R. A., Titeler M. 5-HT1 and 5-HT2 binding properties of derivatives of the hallucinogen 1-(2,5-dimethoxyphenyl)-2-aminopropane (2,5-DMA). Eur J Pharmacol. 1984 Jun 15;102(1):23–29. doi: 10.1016/0014-2999(84)90333-9. [DOI] [PubMed] [Google Scholar]
  28. Sharp T., Backus L. I., Hjorth S., Bramwell S. R., Grahame-Smith D. G. Further investigation of the in vivo pharmacological properties of the putative 5-HT1A antagonist, BMY 7378. Eur J Pharmacol. 1990 Feb 13;176(3):331–340. doi: 10.1016/0014-2999(90)90027-4. [DOI] [PubMed] [Google Scholar]
  29. Sills M. A., Wolfe B. B., Frazer A. Determination of selective and nonselective compounds for the 5-HT 1A and 5-HT 1B receptor subtypes in rat frontal cortex. J Pharmacol Exp Ther. 1984 Dec;231(3):480–487. [PubMed] [Google Scholar]
  30. Tricklebank M. D., Forler C., Fozard J. R. The involvement of subtypes of the 5-HT1 receptor and of catecholaminergic systems in the behavioural response to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur J Pharmacol. 1984 Nov 13;106(2):271–282. doi: 10.1016/0014-2999(84)90714-3. [DOI] [PubMed] [Google Scholar]
  31. Tricklebank M. D., Forler C., Middlemiss D. N., Fozard J. R. Subtypes of the 5-HT receptor mediating the behavioural responses to 5-methoxy-N,N-dimethyltryptamine in the rat. Eur J Pharmacol. 1985 Oct 29;117(1):15–24. doi: 10.1016/0014-2999(85)90467-4. [DOI] [PubMed] [Google Scholar]
  32. Trulson M. E., Eubanks E. E., Jacobs B. L. Behavioral evidence for supersensitivity following destruction of central serotonergic nerve terminals by 5,7-dihydroxytryptamine. J Pharmacol Exp Ther. 1976 Jul;198(1):23–32. [PubMed] [Google Scholar]
  33. Vetulani J., Bednarczyk B., Reichenberg K., Rokosz A. Head twitches induced by LSD and quipazine: similarities and differences. Neuropharmacology. 1980 Feb;19(2):155–158. doi: 10.1016/0028-3908(80)90131-8. [DOI] [PubMed] [Google Scholar]
  34. Weiss S., Sebben M., Kemp D. E., Bockaert J. Serotonin 5-HT1 receptors mediate inhibition of cyclic AMP production in neurons. Eur J Pharmacol. 1986 Jan 21;120(2):227–230. doi: 10.1016/0014-2999(86)90544-3. [DOI] [PubMed] [Google Scholar]
  35. Yap C. Y., Taylor D. A. Involvement of 5-HT2 receptors in the wet-dog shake behaviour induced by 5-hydroxytryptophan in the rat. Neuropharmacology. 1983 Jul;22(7):801–804. doi: 10.1016/0028-3908(83)90123-5. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES