Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 Aug;100(4):889–893. doi: 10.1111/j.1476-5381.1990.tb14110.x

Aging differentially affects direct and indirect actions of endothelin-1 in perfused mesenteric arteries of the rat.

Y Dohi 1, T F Lüscher 1
PMCID: PMC1917602  PMID: 2207507

Abstract

1. The effects of age on the vascular action of endothelin-1 were studied in mesenteric resistance arteries of 4, 9 and 27 month old Fischer 344 rats. 2. Third order branches (about 200 microns in diameter) of mesenteric resistance arteries were dissected free and mounted on glass cannulae in organ chambers. Changes in intraluminal diameter of the perfused and pressurized vessels were continuously measured with a video dimension analyzer. 3. Endothelin-1 (10(-14) - 3 x 10(-8) M) caused contractions that were augmented after removal of the endothelium. The inhibitory effects of the endothelium were greater in young than in old rats. 4. The sensitivity of vascular smooth muscle to endothelin-1 decreased with age, while the maximal response was maintained. In contrast, the contractions to noradrenaline were unaffected by aging. 5. Threshold concentrations of endothelin-1 potentiated the contractions evoked by low and moderate concentrations of noradrenaline (10(-7) - 10(-6) M) in old, but not in young, rats. 6. Endothelium-dependent relaxations to acetylcholine inhibited maximal contractions to endothelin-1 and this effect decreased with age. In contrast, the relaxations to the nitric oxide donor, 3-morpholinosydnonimine (SIN-1; the active metabolite of molsidomine), did not differ in the three age groups. 7. Aging specifically decreases the direct contractile effects of endothelin-1 and the inhibitory effects of the endothelium against these contractions, while the indirect (potentiating) effects of the peptide become more pronounced.

Full text

PDF
889

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando K., Hirata Y., Shichiri M., Emori T., Marumo F. Presence of immunoreactive endothelin in human plasma. FEBS Lett. 1989 Mar 13;245(1-2):164–166. doi: 10.1016/0014-5793(89)80213-3. [DOI] [PubMed] [Google Scholar]
  2. Diederich D., Yang Z. H., Bühler F. R., Lüscher T. F. Impaired endothelium-dependent relaxations in hypertensive resistance arteries involve cyclooxygenase pathway. Am J Physiol. 1990 Feb;258(2 Pt 2):H445–H451. doi: 10.1152/ajpheart.1990.258.2.H445. [DOI] [PubMed] [Google Scholar]
  3. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  4. Halpern W., Osol G., Coy G. S. Mechanical behavior of pressurized in vitro prearteriolar vessels determined with a video system. Ann Biomed Eng. 1984;12(5):463–479. doi: 10.1007/BF02363917. [DOI] [PubMed] [Google Scholar]
  5. Hartter E., Woloszczuk W. Radioimmunoassay of endothelin. Lancet. 1989 Apr 22;1(8643):909–909. doi: 10.1016/s0140-6736(89)92915-2. [DOI] [PubMed] [Google Scholar]
  6. Hirata Y., Yoshimi H., Takaichi S., Yanagisawa M., Masaki T. Binding and receptor down-regulation of a novel vasoconstrictor endothelin in cultured rat vascular smooth muscle cells. FEBS Lett. 1988 Oct 24;239(1):13–17. doi: 10.1016/0014-5793(88)80536-2. [DOI] [PubMed] [Google Scholar]
  7. Hongo K., Nakagomi T., Kassell N. F., Sasaki T., Lehman M., Vollmer D. G., Tsukahara T., Ogawa H., Torner J. Effects of aging and hypertension on endothelium-dependent vascular relaxation in rat carotid artery. Stroke. 1988 Jul;19(7):892–897. doi: 10.1161/01.str.19.7.892. [DOI] [PubMed] [Google Scholar]
  8. Hynes M. R., Duckles S. P. Effect of increasing age on the endothelium-mediated relaxation of rat blood vessels in vitro. J Pharmacol Exp Ther. 1987 May;241(2):387–392. [PubMed] [Google Scholar]
  9. Katusic Z. S., Vanhoutte P. M. Superoxide anion is an endothelium-derived contracting factor. Am J Physiol. 1989 Jul;257(1 Pt 2):H33–H37. doi: 10.1152/ajpheart.1989.257.1.H33. [DOI] [PubMed] [Google Scholar]
  10. Kukovetz W. R., Holzmann S. Mechanism of vasodilation by molsidomine. Am Heart J. 1985 Mar;109(3 Pt 2):637–640. doi: 10.1016/0002-8703(85)90669-6. [DOI] [PubMed] [Google Scholar]
  11. Lüscher T. F. Endothelium-derived relaxing and contracting factors: potential role in coronary artery disease. Eur Heart J. 1989 Sep;10(9):847–857. doi: 10.1093/oxfordjournals.eurheartj.a059580. [DOI] [PubMed] [Google Scholar]
  12. Lüscher T. F., Yang Z., Tschudi M., von Segesser L., Stulz P., Boulanger C., Siebenmann R., Turina M., Bühler F. R. Interaction between endothelin-1 and endothelium-derived relaxing factor in human arteries and veins. Circ Res. 1990 Apr;66(4):1088–1094. doi: 10.1161/01.res.66.4.1088. [DOI] [PubMed] [Google Scholar]
  13. Maggi C. A., Giuliani S., Patacchini R., Rovero P., Giachetti A., Meli A. The activity of peptides of the endothelin family in various mammalian smooth muscle preparations. Eur J Pharmacol. 1989 Dec 12;174(1):23–31. doi: 10.1016/0014-2999(89)90869-8. [DOI] [PubMed] [Google Scholar]
  14. Miller V. M., Vanhoutte P. M. Endothelium-dependent contractions to arachidonic acid are mediated by products of cyclooxygenase. Am J Physiol. 1985 Apr;248(4 Pt 2):H432–H437. doi: 10.1152/ajpheart.1985.248.4.H432. [DOI] [PubMed] [Google Scholar]
  15. Moncada S., Vane J. R. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol Rev. 1978 Sep;30(3):293–331. [PubMed] [Google Scholar]
  16. Moritoki H., Hosoki E., Ishida Y. Age-related decrease in endothelium-dependent dilator response to histamine in rat mesenteric artery. Eur J Pharmacol. 1986 Jul 15;126(1-2):61–67. doi: 10.1016/0014-2999(86)90738-7. [DOI] [PubMed] [Google Scholar]
  17. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  18. Rubanyi G. M., Lorenz R. R., Vanhoutte P. M. Bioassay of endothelium-derived relaxing factor(s): inactivation by catecholamines. Am J Physiol. 1985 Jul;249(1 Pt 2):H95–101. doi: 10.1152/ajpheart.1985.249.1.H95. [DOI] [PubMed] [Google Scholar]
  19. Rubanyi G. M., Vanhoutte P. M. Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J Physiol. 1985 Jul;364:45–56. doi: 10.1113/jphysiol.1985.sp015728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shirasaki Y., Su C., Lee T. J., Kolm P., Cline W. H., Jr, Nickols G. A. Endothelial modulation of vascular relaxation to nitrovasodilators in aging and hypertension. J Pharmacol Exp Ther. 1986 Dec;239(3):861–866. [PubMed] [Google Scholar]
  21. Tabuchi Y., Nakamaru M., Rakugi H., Nagano M., Ogihara T. Endothelin enhances adrenergic vasoconstriction in perfused rat mesenteric arteries. Biochem Biophys Res Commun. 1989 Mar 31;159(3):1304–1308. doi: 10.1016/0006-291x(89)92252-3. [DOI] [PubMed] [Google Scholar]
  22. Tesfamariam B., Halpern W. Endothelium-dependent and endothelium-independent vasodilation in resistance arteries from hypertensive rats. Hypertension. 1988 May;11(5):440–444. doi: 10.1161/01.hyp.11.5.440. [DOI] [PubMed] [Google Scholar]
  23. Tomobe Y., Miyauchi T., Saito A., Yanagisawa M., Kimura S., Goto K., Masaki T. Effects of endothelin on the renal artery from spontaneously hypertensive and Wistar Kyoto rats. Eur J Pharmacol. 1988 Aug 2;152(3):373–374. doi: 10.1016/0014-2999(88)90736-4. [DOI] [PubMed] [Google Scholar]
  24. Watanabe H., Miyazaki H., Kondoh M., Masuda Y., Kimura S., Yanagisawa M., Masaki T., Murakami K. Two distinct types of endothelin receptors are present on chick cardiac membranes. Biochem Biophys Res Commun. 1989 Jun 30;161(3):1252–1259. doi: 10.1016/0006-291x(89)91377-6. [DOI] [PubMed] [Google Scholar]
  25. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES