Abstract
Immunoglobulin gene fragments encoding the variable modules of the heavy and light chains of a transmissible gastroenteritis coronavirus (TGEV)-neutralizing monoclonal antibody (MAb) have been cloned and sequenced. The selected MAb recognizes a highly conserved viral epitope and does not lead to the selection of neutralization escape mutants. The sequences of MAb 6A.C3 kappa and gamma 1 modules were identified as subgroup V and subgroup IIIC, respectively. The chimeric immunoglobulin genes encoding the variable modules from the murine MAb and constant modules of human gamma 1 and kappa chains were constructed by reverse transcriptase PCR. Chimeric immunoglobulins were stably or transiently expressed in murine myelomas or COS cells, respectively. The secreted recombinant antibodies had radioimmunoassay titers (i.e., the highest dilution giving a threefold increase over the background) higher than 10(3) and reduced the infectious virus more than 10(4)-fold. Recombinant dimeric immunoglobulin A (IgA) showed a 50-fold enhanced neutralization of TGEV relative to a recombinant monomeric IgG1 which contained the identical antigen binding site. Stably transformed epithelial cell lines which expressed either recombinant IgG or IgA TGEV-neutralizing antibodies reduced virus production by > 10(5)-fold after infection with homologous virus, although a residual level of virus production (< 10(2) PFU/ml) remained in less than 0.1% of the cells. This low-level persistent infection was shown not to be due to the selection of neutralization escape mutants. The implications of these findings for somatic gene therapy with recombinant antibodies are discussed.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antón I. M., Suñ C., Meloen R. H., Borrás-Cuesta F., Enjuanes L. A transmissible gastroenteritis coronavirus nucleoprotein epitope elicits T helper cells that collaborate in the in vitro antibody synthesis to the three major structural viral proteins. Virology. 1995 Oct 1;212(2):746–751. doi: 10.1006/viro.1995.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armstrong S. J., Outlaw M. C., Dimmock N. J. Morphological studies of the neutralization of influenza virus by IgM. J Gen Virol. 1990 Oct;71(Pt 10):2313–2319. doi: 10.1099/0022-1317-71-10-2313. [DOI] [PubMed] [Google Scholar]
- Biocca S., Pierandrei-Amaldi P., Campioni N., Cattaneo A. Intracellular immunization with cytosolic recombinant antibodies. Biotechnology (N Y) 1994 Apr;12(4):396–399. doi: 10.1038/nbt0494-396. [DOI] [PubMed] [Google Scholar]
- Brim T. A., VanCott J. L., Lunney J. K., Saif L. J. Lymphocyte proliferation responses of pigs inoculated with transmissible gastroenteritis virus or porcine respiratory coronavirus. Am J Vet Res. 1994 Apr;55(4):494–501. [PubMed] [Google Scholar]
- Bullido M. J., Correa I., Jiménez G., Suñ C., Gebauer F., Enjuanes L. Induction of transmissible gastroenteritis coronavirus-neutralizing antibodies in vitro by virus-specific T helper cell hybridomas. J Gen Virol. 1989 Mar;70(Pt 3):659–672. doi: 10.1099/0022-1317-70-3-659. [DOI] [PubMed] [Google Scholar]
- Carlson J. R. A new use for intracellular antibody expression: inactivation of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7427–7428. doi: 10.1073/pnas.90.16.7427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Correa I., Gebauer F., Bullido M. J., Suñ C., Baay M. F., Zwaagstra K. A., Posthumus W. P., Lenstra J. A., Enjuanes L. Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus. J Gen Virol. 1990 Feb;71(Pt 2):271–279. doi: 10.1099/0022-1317-71-2-271. [DOI] [PubMed] [Google Scholar]
- Correa I., Jiménez G., Suñ C., Bullido M. J., Enjuanes L. Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Res. 1988 Apr;10(1):77–93. doi: 10.1016/0168-1702(88)90059-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delmas B., Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J Virol. 1990 Nov;64(11):5367–5375. doi: 10.1128/jvi.64.11.5367-5375.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duan L., Bagasra O., Laughlin M. A., Oakes J. W., Pomerantz R. J. Potent inhibition of human immunodeficiency virus type 1 replication by an intracellular anti-Rev single-chain antibody. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5075–5079. doi: 10.1073/pnas.91.11.5075. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- Fichot O., Girard M. An improved method for sequencing of RNA templates. Nucleic Acids Res. 1990 Oct 25;18(20):6162–6162. doi: 10.1093/nar/18.20.6162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gebauer F., Posthumus W. P., Correa I., Suñ C., Smerdou C., Sánchez C. M., Lenstra J. A., Meloen R. H., Enjuanes L. Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein. Virology. 1991 Jul;183(1):225–238. doi: 10.1016/0042-6822(91)90135-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodman J. W., Donch J. J. Phage-neutralizing activity in light polypeptide chains of rabbit antibody. Immunochemistry. 1965 Dec;2(4):351–357. doi: 10.1016/0019-2791(65)90035-2. [DOI] [PubMed] [Google Scholar]
- Jiang W., Venugopal K., Gould E. A. Intracellular interference of tick-borne flavivirus infection by using a single-chain antibody fragment delivered by recombinant Sindbis virus. J Virol. 1995 Feb;69(2):1044–1049. doi: 10.1128/jvi.69.2.1044-1049.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiménez G., Correa I., Melgosa M. P., Bullido M. J., Enjuanes L. Critical epitopes in transmissible gastroenteritis virus neutralization. J Virol. 1986 Oct;60(1):131–139. doi: 10.1128/jvi.60.1.131-139.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kabat E. A. Antibody diversity versus antibody complementarity. Pharmacol Rev. 1982 Mar;34(1):23–38. [PubMed] [Google Scholar]
- Lamm M. E., Nedrud J. G., Kaetzel C. S., Mazanec M. B. IgA and mucosal defense. APMIS. 1995 Apr;103(4):241–246. doi: 10.1111/j.1699-0463.1995.tb01101.x. [DOI] [PubMed] [Google Scholar]
- Liew F. Y., Russell S. M., Appleyard G., Brand C. M., Beale J. Cross-protection in mice infected with influenza A virus by the respiratory route is correlated with local IgA antibody rather than serum antibody or cytotoxic T cell reactivity. Eur J Immunol. 1984 Apr;14(4):350–356. doi: 10.1002/eji.1830140414. [DOI] [PubMed] [Google Scholar]
- Liu A. Y., Mack P. W., Champion C. I., Robinson R. R. Expression of mouse::human immunoglobulin heavy-chain cDNA in lymphoid cells. Gene. 1987;54(1):33–40. doi: 10.1016/0378-1119(87)90344-1. [DOI] [PubMed] [Google Scholar]
- Marasco W. A., Haseltine W. A., Chen S. Y. Design, intracellular expression, and activity of a human anti-human immunodeficiency virus type 1 gp120 single-chain antibody. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7889–7893. doi: 10.1073/pnas.90.16.7889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazanec M. B., Coudret C. L., Fletcher D. R. Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. J Virol. 1995 Feb;69(2):1339–1343. doi: 10.1128/jvi.69.2.1339-1343.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazanec M. B., Kaetzel C. S., Lamm M. E., Fletcher D., Nedrud J. G. Intracellular neutralization of virus by immunoglobulin A antibodies. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6901–6905. doi: 10.1073/pnas.89.15.6901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazanec M. B., Nedrud J. G., Kaetzel C. S., Lamm M. E. A three-tiered view of the role of IgA in mucosal defense. Immunol Today. 1993 Sep;14(9):430–435. doi: 10.1016/0167-5699(93)90245-G. [DOI] [PubMed] [Google Scholar]
- McClurkin A. W., Norman J. O. Studies on transmissible gastroenteritis of swine. II. Selected characteristics of a cytopathogenic virus common to five isolates from transmissible gastroenteritis. Can J Comp Med Vet Sci. 1966 Jul;30(7):190–198. [PMC free article] [PubMed] [Google Scholar]
- McGhee J. R., Mestecky J., Elson C. O., Kiyono H. Regulation of IgA synthesis and immune response by T cells and interleukins. J Clin Immunol. 1989 May;9(3):175–199. doi: 10.1007/BF00916814. [DOI] [PubMed] [Google Scholar]
- Mestecky J., McGhee J. R. Immunoglobulin A (IgA): molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv Immunol. 1987;40:153–245. doi: 10.1016/s0065-2776(08)60240-0. [DOI] [PubMed] [Google Scholar]
- Outlaw M. C., Dimmock N. J. Mechanisms of neutralization of influenza virus on mouse tracheal epithelial cells by mouse monoclonal polymeric IgA and polyclonal IgM directed against the viral haemagglutinin. J Gen Virol. 1990 Jan;71(Pt 1):69–76. doi: 10.1099/0022-1317-71-1-69. [DOI] [PubMed] [Google Scholar]
- Potter H., Weir L., Leder P. Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7161–7165. doi: 10.1073/pnas.81.22.7161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richardson J. H., Marasco W. A. Intracellular antibodies: development and therapeutic potential. Trends Biotechnol. 1995 Aug;13(8):306–310. doi: 10.1016/S0167-7799(00)88970-2. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staats H. F., Jackson R. J., Marinaro M., Takahashi I., Kiyono H., McGhee J. R. Mucosal immunity to infection with implications for vaccine development. Curr Opin Immunol. 1994 Aug;6(4):572–583. doi: 10.1016/0952-7915(94)90144-9. [DOI] [PubMed] [Google Scholar]
- Stone S. S., Kemeny L. J., Woods R. D., Jensen M. T. Efficacy of isolated colostral IgA, IgG, and IgM(A) to protect neonatal pigs against the coronavirus of transmissible gastroenteritis. Am J Vet Res. 1977 Sep;38(9):1285–1288. [PubMed] [Google Scholar]
- Suñ C., Jiménez G., Correa I., Bullido M. J., Gebauer F., Smerdou C., Enjuanes L. Mechanisms of transmissible gastroenteritis coronavirus neutralization. Virology. 1990 Aug;177(2):559–569. doi: 10.1016/0042-6822(90)90521-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sánchez C. M., Gebauer F., Suñ C., Mendez A., Dopazo J., Enjuanes L. Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology. 1992 Sep;190(1):92–105. doi: 10.1016/0042-6822(92)91195-Z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sánchez C. M., Jiménez G., Laviada M. D., Correa I., Suñ C., Bullido M. j., Gebauer F., Smerdou C., Callebaut P., Escribano J. M. Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology. 1990 Feb;174(2):410–417. doi: 10.1016/0042-6822(90)90094-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor H. P., Dimmock N. J. Mechanism of neutralization of influenza virus by secretory IgA is different from that of monomeric IgA or IgG. J Exp Med. 1985 Jan 1;161(1):198–209. doi: 10.1084/jem.161.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torres J. M., Alonso C., Ortega A., Mittal S., Graham F., Enjuanes L. Tropism of human adenovirus type 5-based vectors in swine and their ability to protect against transmissible gastroenteritis coronavirus. J Virol. 1996 Jun;70(6):3770–3780. doi: 10.1128/jvi.70.6.3770-3780.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torres J. M., Sánchez C., Suñ C., Smerdou C., Prevec L., Graham F., Enjuanes L. Induction of antibodies protecting against transmissible gastroenteritis coronavirus (TGEV) by recombinant adenovirus expressing TGEV spike protein. Virology. 1995 Nov 10;213(2):503–516. doi: 10.1006/viro.1995.0023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VanCott J. L., Brim T. A., Simkins R. A., Saif L. J. Isotype-specific antibody-secreting cells to transmissible gastroenteritis virus and porcine respiratory coronavirus in gut- and bronchus-associated lymphoid tissues of suckling pigs. J Immunol. 1993 May 1;150(9):3990–4000. [PubMed] [Google Scholar]
- Weidle U. H., Borgya A., Mattes R., Lenz H., Buckel P. Reconstitution of functionally active antibody directed against creatine kinase from separately expressed heavy and light chains in non-lymphoid cells. Gene. 1987;51(1):21–29. doi: 10.1016/0378-1119(87)90470-7. [DOI] [PubMed] [Google Scholar]
- Weidle U. H., Koch S., Buckel P. Expression of antibody cDNA in murine myeloma cells: possible involvement of additional regulatory elements in transcription of immunoglobulin genes. Gene. 1987;60(2-3):205–216. doi: 10.1016/0378-1119(87)90229-0. [DOI] [PubMed] [Google Scholar]
- Wesley R. D., Woods R. D. Immunization of pregnant gilts with PRCV induces lactogenic immunity for protection of nursing piglets from challenge with TGEV. Vet Microbiol. 1993 Dec;38(1-2):31–40. doi: 10.1016/0378-1135(93)90073-G. [DOI] [PMC free article] [PubMed] [Google Scholar]