Abstract
1. The effects of phentolamine and yohimbine on adenosine 5'-triphosphate (ATP)-sensitive K+ channels were studied in normal mouse beta-cells. 2. In the presence of 3 mM glucose, many ATP-sensitive K+ channels are open in the beta-cell membrane. Under these conditions, phentolamine inhibited 86Rb efflux from the islets. This inhibition was faster with 100 than with 20 microM phentolamine but its steady-state magnitude was similar with both concentrations. Yohimbine (20-100 microM) also inhibited the efflux rate but was not as potent as phentolamine. 3. In the presence of 6 mM glucose, most ATP-sensitive K+ channels are closed in the beta-cell membrane. Their opening by 100 microM diazoxide caused a marked acceleration of 86Rb efflux from the islets. This acceleration was almost entirely prevented by 20 microM phentolamine. It was barely affected by 20 microM yohimbine and reduced by 50% by 100 microM yohimbine. 4. ATP-sensitive K+ currents were studied in single beta-cells by the whole cell patch-clamp technique. Phentolamine (20-100 microM) caused a progressive but almost complete and irreversible inhibition of the current. The effects of yohimbine were faster but smaller; the inhibition was still incomplete with 100 microM yohimbine. 5. The increase in ATP-sensitive K+ current produced by 100 microM diazoxide was prevented by 100 microM phentolamine but only partially attenuated by 100 microM yohimbine. 6. It is concluded that phentolamine inhibits ATP-sensitive K+ channels in pancreatic beta-cells. This novel effect of phentolamine resembles that of hypoglycaemic sulphonylureas. It may account for previously unexplained effects of the drug.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF![115](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00b5/1917617/3dbcbe385bc6/brjpharm00245-0119.png)
![116](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00b5/1917617/da174778f859/brjpharm00245-0120.png)
![117](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00b5/1917617/2f0fbba061e4/brjpharm00245-0121.png)
![118](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00b5/1917617/618b95b38379/brjpharm00245-0122.png)
![119](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00b5/1917617/b965bc214fb2/brjpharm00245-0123.png)
![120](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00b5/1917617/274cba525ce7/brjpharm00245-0124.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashcroft F. M., Ashcroft S. J., Harrison D. E. Properties of single potassium channels modulated by glucose in rat pancreatic beta-cells. J Physiol. 1988 Jun;400:501–527. doi: 10.1113/jphysiol.1988.sp017134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blackard W. G., Aprill C. N., 3rd Mechanisms of action of diazoxide. J Lab Clin Med. 1967 Jun;69(6):960–967. [PubMed] [Google Scholar]
- Burr I. M., Marliss E. B., Stauffacher W., Renold A. E. Diazoxide effects on biphasic insulin release: "adrenergic" suppression and enhancement in the perifused rat pancreas. J Clin Invest. 1971 Jul;50(7):1444–1450. doi: 10.1172/JCI106628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buse M. G., Johnson A. H., Kuperminc D., Buse J. Effect of alpha-adrenergic blockade on insulin secretion in man. Metabolism. 1970 Mar;19(3):219–225. doi: 10.1016/0026-0495(70)90055-7. [DOI] [PubMed] [Google Scholar]
- Cerasi E., Effendic S., Luft R. Role of adrenergic receptors in glucose-induced insulin secretion in man. Lancet. 1969 Aug 9;2(7615):301–302. doi: 10.1016/s0140-6736(69)90059-2. [DOI] [PubMed] [Google Scholar]
- Dunne M. J., Illot M. C., Peterson O. H. Interaction of diazoxide, tolbutamide and ATP4- on nucleotide-dependent K+ channels in an insulin-secreting cell line. J Membr Biol. 1987;99(3):215–224. doi: 10.1007/BF01995702. [DOI] [PubMed] [Google Scholar]
- Efendić S., Cerasi E., Luft R. Effect of phentolamine and preperfusion with glucose on insulin release from the isolated perfused pancreas from fasted and fed rats. Diabetologia. 1975 Oct;11(5):407–410. doi: 10.1007/BF00429908. [DOI] [PubMed] [Google Scholar]
- Garrino M. G., Henquin J. C. B cell adrenoceptors and sulphonylurea-induced insulin release in mouse islets. Diabetologia. 1990 Mar;33(3):145–147. doi: 10.1007/BF00404040. [DOI] [PubMed] [Google Scholar]
- Garrino M. G., Henquin J. C. Highly potent and stereoselective effects of the benzoic acid derivative AZ-DF 265 on pancreatic beta-cells. Br J Pharmacol. 1988 Jan;93(1):61–68. doi: 10.1111/j.1476-5381.1988.tb11405.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garrino M. G., Plant T. D., Henquin J. C. Effects of putative activators of K+ channels in mouse pancreatic beta-cells. Br J Pharmacol. 1989 Nov;98(3):957–965. doi: 10.1111/j.1476-5381.1989.tb14626.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henquin J. C., Charles S., Nenquin M., Mathot F., Tamagawa T. Diazoxide and D600 inhibition of insulin release. Distinct mechanisms explain the specificity for different stimuli. Diabetes. 1982 Sep;31(9):776–783. doi: 10.2337/diab.31.9.776. [DOI] [PubMed] [Google Scholar]
- Henquin J. C. D-glucose inhibits potassium efflux from pancreatic islet cells. Nature. 1978 Jan 19;271(5642):271–273. doi: 10.1038/271271a0. [DOI] [PubMed] [Google Scholar]
- Henquin J. C., Meissner H. P. Opposite effects of tolbutamide and diazoxide on 86Rb+ fluxes and membrane potential in pancreatic B cells. Biochem Pharmacol. 1982 Apr 1;31(7):1407–1415. doi: 10.1016/0006-2952(82)90036-3. [DOI] [PubMed] [Google Scholar]
- Hillaire-Buys D., Gross R., Blayac J. P., Ribes G., Loubatières-Mariani M. M. Effects of alpha-adrenoceptor agonists and antagonists on insulin secreting cells and pancreatic blood vessels: comparative study. Eur J Pharmacol. 1985 Nov 5;117(2):253–257. doi: 10.1016/0014-2999(85)90610-7. [DOI] [PubMed] [Google Scholar]
- Lundquist I. Interaction of amines and aminergic blocking agents with blood glucose regulation. II. Alpha-adrenergic blockade. Eur J Pharmacol. 1972 May;18(2):225–235. doi: 10.1016/0014-2999(72)90246-4. [DOI] [PubMed] [Google Scholar]
- McPherson G. A., Angus J. A. Phentolamine and structurally related compounds selectively antagonize the vascular actions of the K+ channel opener, cromromakalim. Br J Pharmacol. 1989 Jul;97(3):941–949. doi: 10.1111/j.1476-5381.1989.tb12035.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michel M. C., Insel P. A. Are there multiple imidazoline binding sites? Trends Pharmacol Sci. 1989 Sep;10(9):342–344. doi: 10.1016/0165-6147(89)90002-3. [DOI] [PubMed] [Google Scholar]
- Misbin R. I., Edgar P. J., Lockwood D. H. Adrenergic regulation of insulin secretion during fasting in normal subjects. Diabetes. 1970 Oct;19(10):688–693. doi: 10.2337/diab.19.10.688. [DOI] [PubMed] [Google Scholar]
- Misler S., Falke L. C., Gillis K., McDaniel M. L. A metabolite-regulated potassium channel in rat pancreatic B cells. Proc Natl Acad Sci U S A. 1986 Sep;83(18):7119–7123. doi: 10.1073/pnas.83.18.7119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray M. A., Boyle J. P., Small R. C. Cromakalim-induced relaxation of guinea-pig isolated trachealis: antagonism by glibenclamide and by phentolamine. Br J Pharmacol. 1989 Nov;98(3):865–874. doi: 10.1111/j.1476-5381.1989.tb14615.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakaki T., Nakadate T., Kato R. Alpha 2-adrenoceptors modulating insulin release from isolated pancreatic islets. Naunyn Schmiedebergs Arch Pharmacol. 1980 Aug;313(2):151–153. doi: 10.1007/BF00498572. [DOI] [PubMed] [Google Scholar]
- Ostenson C. G., Pigon J., Doxey J. C., Efendic S. Alpha 2-adrenoceptor blockade does not enhance glucose-induced insulin release in normal subjects or patients with noninsulin-dependent diabetes. J Clin Endocrinol Metab. 1988 Nov;67(5):1054–1059. doi: 10.1210/jcem-67-5-1054. [DOI] [PubMed] [Google Scholar]
- Petersen O. H., Findlay I. Electrophysiology of the pancreas. Physiol Rev. 1987 Jul;67(3):1054–1116. doi: 10.1152/physrev.1987.67.3.1054. [DOI] [PubMed] [Google Scholar]
- Plant T. D. Properties and calcium-dependent inactivation of calcium currents in cultured mouse pancreatic B-cells. J Physiol. 1988 Oct;404:731–747. doi: 10.1113/jphysiol.1988.sp017316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Porter J., Andrews S., Blackard W. Biphasic effect of phentolamine on glucose-induced insulin release by pancreatic islets: possible mechanism of action at high concentrations (10(-3) M). Res Commun Chem Pathol Pharmacol. 1978 Dec;22(3):523–534. [PubMed] [Google Scholar]
- Robertson R. P., Halter J. B., Porte D., Jr A role for alpha-adrenergic receptors in abnormal insulin secretion in diabetes mellitus. J Clin Invest. 1976 Mar;57(3):791–795. doi: 10.1172/JCI108338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson R. P., Porte D., Jr Adrenergic modulation of basal insulin secretion in man. Diabetes. 1973 Jan;22(1):1–8. doi: 10.2337/diab.22.1.1. [DOI] [PubMed] [Google Scholar]
- Rorsman P., Trube G. Calcium and delayed potassium currents in mouse pancreatic beta-cells under voltage-clamp conditions. J Physiol. 1986 May;374:531–550. doi: 10.1113/jphysiol.1986.sp016096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rorsman P., Trube G. Glucose dependent K+-channels in pancreatic beta-cells are regulated by intracellular ATP. Pflugers Arch. 1985 Dec;405(4):305–309. doi: 10.1007/BF00595682. [DOI] [PubMed] [Google Scholar]
- Satin L. S., Hopkins W. F., Fatherazi S., Cook D. L. Expression of a rapid, low-voltage threshold K current in insulin-secreting cells is dependent on intracellular calcium buffering. J Membr Biol. 1989 Dec;112(3):213–222. doi: 10.1007/BF01870952. [DOI] [PubMed] [Google Scholar]
- Schulz A., Hasselblatt A. An insulin-releasing property of imidazoline derivatives is not limited to compounds that block alpha-adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol. 1989 Sep;340(3):321–327. doi: 10.1007/BF00168517. [DOI] [PubMed] [Google Scholar]
- Schulz A., Hasselblatt A. Phentolamine, a deceptive tool to investigate sympathetic nervous control of insulin release. Naunyn Schmiedebergs Arch Pharmacol. 1988 Jun;337(6):637–643. doi: 10.1007/BF00175789. [DOI] [PubMed] [Google Scholar]
- Smith M., Furman B. L. Augmentation of glucose induced insulin secretion by pertussis vaccine, phentolamine and benextramine: involvement of mechanisms additional to prevention of the inhibitory actions of catecholamines in rats. Acta Endocrinol (Copenh) 1988 May;118(1):89–95. doi: 10.1530/acta.0.1180089. [DOI] [PubMed] [Google Scholar]
- Standen N. B., Quayle J. M., Davies N. W., Brayden J. E., Huang Y., Nelson M. T. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science. 1989 Jul 14;245(4914):177–180. doi: 10.1126/science.2501869. [DOI] [PubMed] [Google Scholar]
- Sturgess N. C., Kozlowski R. Z., Carrington C. A., Hales C. N., Ashford M. L. Effects of sulphonylureas and diazoxide on insulin secretion and nucleotide-sensitive channels in an insulin-secreting cell line. Br J Pharmacol. 1988 Sep;95(1):83–94. doi: 10.1111/j.1476-5381.1988.tb16551.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trube G., Rorsman P., Ohno-Shosaku T. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic beta-cells. Pflugers Arch. 1986 Nov;407(5):493–499. doi: 10.1007/BF00657506. [DOI] [PubMed] [Google Scholar]
- Zünkler B. J., Lenzen S., Männer K., Panten U., Trube G. Concentration-dependent effects of tolbutamide, meglitinide, glipizide, glibenclamide and diazoxide on ATP-regulated K+ currents in pancreatic B-cells. Naunyn Schmiedebergs Arch Pharmacol. 1988 Feb;337(2):225–230. doi: 10.1007/BF00169252. [DOI] [PubMed] [Google Scholar]