Abstract
We have characterized the 3'-most 3 kb of the genome of bovine torovirus (BoTV) strain Breda. A novel 1.2-kb gene, located between the genes for the membrane and nucleocapsid proteins, was identified. This gene, the 3'-most 0.5 kb of which is also present in the genome of the equine torovirus isolate Berne virus (BEV), codes for a class I membrane protein displaying 30% sequence identity with the hemagglutinin-esterases (HEs) of coronaviruses and influenza C viruses. Heterologous expression of the BoTV HE gene yielded a 65,000-molecular weight N-glycosylated protein displaying acetylesterase activity. Serologic evidence indicates that the HE homolog is expressed during the natural infection and represents a prominent antigen. By using an antiserum raised against residues 13 to 130 of HE, the HE protein was detected in radioiodinated, sucrose gradient-purified BoTV preparations. Formal evidence that HE is a structural protein was provided by immunoelectron microscopy. In addition to the large, 17- to 20-nm spikes, BoTV virions possess shorter surface projections (6 nm on average). We postulate that these surface projections, which are absent from the BEV virion, are composed of the BoTV HE homolog. The HE gene, which has now been demonstrated in three different virus genera, is a showpiece example of modular evolution.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bridger J. C., Caul E. O., Egglestone S. I. Replication of an enteric bovine coronavirus in intestinal organ cultures. Arch Virol. 1978;57(1):43–51. doi: 10.1007/BF01315636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butor C., Diaz S., Varki A. High level O-acetylation of sialic acids on N-linked oligosaccharides of rat liver membranes. Differential subcellular distribution of 7- and 9-O-acetyl groups and of enzymes involved in their regulation. J Biol Chem. 1993 May 15;268(14):10197–10206. [PubMed] [Google Scholar]
- Butor C., Higa H. H., Varki A. Structural, immunological, and biosynthetic studies of a sialic acid-specific O-acetylesterase from rat liver. J Biol Chem. 1993 May 15;268(14):10207–10213. [PubMed] [Google Scholar]
- Callebaut P. E., Pensaert M. B. Characterization and isolation of structural polypeptides in haemagglutinating encephalomyelitis virus. J Gen Virol. 1980 May;48(1):193–204. doi: 10.1099/0022-1317-48-1-193. [DOI] [PubMed] [Google Scholar]
- Chao L. Fitness of RNA virus decreased by Muller's ratchet. Nature. 1990 Nov 29;348(6300):454–455. doi: 10.1038/348454a0. [DOI] [PubMed] [Google Scholar]
- Chirnside E. D., de Vries A. A., Mumford J. A., Rottier P. J. Equine arteritis virus-neutralizing antibody in the horse is induced by a determinant on the large envelope glycoprotein GL. J Gen Virol. 1995 Aug;76(Pt 8):1989–1998. doi: 10.1099/0022-1317-76-8-1989. [DOI] [PubMed] [Google Scholar]
- Den Boon J. A., Snijder E. J., Locker J. K., Horzinek M. C., Rottier P. J. Another triple-spanning envelope protein among intracellularly budding RNA viruses: the torovirus E protein. Virology. 1991 Jun;182(2):655–663. doi: 10.1016/0042-6822(91)90606-C. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deregt D., Sabara M., Babiuk L. A. Structural proteins of bovine coronavirus and their intracellular processing. J Gen Virol. 1987 Nov;68(Pt 11):2863–2877. doi: 10.1099/0022-1317-68-11-2863. [DOI] [PubMed] [Google Scholar]
- Eisenberg D., Schwarz E., Komaromy M., Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol. 1984 Oct 15;179(1):125–142. doi: 10.1016/0022-2836(84)90309-7. [DOI] [PubMed] [Google Scholar]
- Elroy-Stein O., Moss B. Cytoplasmic expression system based on constitutive synthesis of bacteriophage T7 RNA polymerase in mammalian cells. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6743–6747. doi: 10.1073/pnas.87.17.6743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fagerland J. A., Pohlenz J. F., Woode G. N. A morphological study of the replication of Breda virus (proposed family Toroviridae) in bovine intestinal cells. J Gen Virol. 1986 Jul;67(Pt 7):1293–1304. doi: 10.1099/0022-1317-67-7-1293. [DOI] [PubMed] [Google Scholar]
- Fuerst T. R., Niles E. G., Studier F. W., Moss B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122–8126. doi: 10.1073/pnas.83.21.8122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gagneten S., Gout O., Dubois-Dalcq M., Rottier P., Rossen J., Holmes K. V. Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein. J Virol. 1995 Feb;69(2):889–895. doi: 10.1128/jvi.69.2.889-895.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldbach R., Wellink J. Evolution of plus-strand RNA viruses. Intervirology. 1988;29(5):260–267. doi: 10.1159/000150054. [DOI] [PubMed] [Google Scholar]
- Herrewegh A. A., de Groot R. J., Cepica A., Egberink H. F., Horzinek M. C., Rottier P. J. Detection of feline coronavirus RNA in feces, tissues, and body fluids of naturally infected cats by reverse transcriptase PCR. J Clin Microbiol. 1995 Mar;33(3):684–689. doi: 10.1128/jcm.33.3.684-689.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrler G., Dürkop I., Becht H., Klenk H. D. The glycoprotein of influenza C virus is the haemagglutinin, esterase and fusion factor. J Gen Virol. 1988 Apr;69(Pt 4):839–846. doi: 10.1099/0022-1317-69-4-839. [DOI] [PubMed] [Google Scholar]
- Herrler G., Multhaup G., Beyreuther K., Klenk H. D. Serine 71 of the glycoprotein HEF is located at the active site of the acetylesterase of influenza C virus. Arch Virol. 1988;102(3-4):269–274. doi: 10.1007/BF01310831. [DOI] [PubMed] [Google Scholar]
- Herrler G., Nagele A., Meier-Ewert H., Bhown A. S., Compans R. W. Isolation and structural analysis of influenza C virion glycoproteins. Virology. 1981 Sep;113(2):439–451. doi: 10.1016/0042-6822(81)90173-2. [DOI] [PubMed] [Google Scholar]
- Herrler G., Rott R., Klenk H. D., Müller H. P., Shukla A. K., Schauer R. The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. EMBO J. 1985 Jun;4(6):1503–1506. doi: 10.1002/j.1460-2075.1985.tb03809.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hewat E. A., Cusack S., Ruigrok R. W., Verwey C. Low resolution structure of the influenza C glycoprotein determined by electron microscopy. J Mol Biol. 1984 May 15;175(2):175–193. doi: 10.1016/0022-2836(84)90473-x. [DOI] [PubMed] [Google Scholar]
- Hogue B. G., Kienzle T. E., Brian D. A. Synthesis and processing of the bovine enteric coronavirus haemagglutinin protein. J Gen Virol. 1989 Feb;70(Pt 2):345–352. doi: 10.1099/0022-1317-70-2-345. [DOI] [PubMed] [Google Scholar]
- King B., Brian D. A. Bovine coronavirus structural proteins. J Virol. 1982 May;42(2):700–707. doi: 10.1128/jvi.42.2.700-707.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King B., Potts B. J., Brian D. A. Bovine coronavirus hemagglutinin protein. Virus Res. 1985 Feb;2(1):53–59. doi: 10.1016/0168-1702(85)90059-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koopmans M., Cremers H., Woode G., Horzinek M. C. Breda virus (Toroviridae) infection and systemic antibody response in sentinel calves. Am J Vet Res. 1990 Sep;51(9):1443–1448. [PubMed] [Google Scholar]
- Koopmans M., Ederveen J., Woode G. N., Horzinek M. C. Surface proteins of Breda virus. Am J Vet Res. 1986 Sep;47(9):1896–1900. [PubMed] [Google Scholar]
- Koopmans M., van den Boom U., Woode G., Horzinek M. C. Seroepidemiology of Breda virus in cattle using ELISA. Vet Microbiol. 1989 Mar;19(3):233–243. doi: 10.1016/0378-1135(89)90069-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krone W. J., Debouck C., Epstein L. G., Heutink P., Meloen R., Goudsmit J. Natural antibodies to HIV-tat epitopes and expression of HIV-1 genes in vivo. J Med Virol. 1988 Nov;26(3):261–270. doi: 10.1002/jmv.1890260306. [DOI] [PubMed] [Google Scholar]
- Lai M. M. Genetic recombination in RNA viruses. Curr Top Microbiol Immunol. 1992;176:21–32. doi: 10.1007/978-3-642-77011-1_2. [DOI] [PubMed] [Google Scholar]
- Luytjes W., Bredenbeek P. J., Noten A. F., Horzinek M. C., Spaan W. J. Sequence of mouse hepatitis virus A59 mRNA 2: indications for RNA recombination between coronaviruses and influenza C virus. Virology. 1988 Oct;166(2):415–422. doi: 10.1016/0042-6822(88)90512-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Machamer C. E., Mentone S. A., Rose J. K., Farquhar M. G. The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6944–6948. doi: 10.1073/pnas.87.18.6944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mijnes J. D., van der Horst L. M., van Anken E., Horzinek M. C., Rottier P. J., de Groot R. J. Biosynthesis of glycoproteins E and I of feline herpesvirus: gE-gI interaction is required for intracellular transport. J Virol. 1996 Aug;70(8):5466–5475. doi: 10.1128/jvi.70.8.5466-5475.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakada S., Creager R. S., Krystal M., Aaronson R. P., Palese P. Influenza C virus hemagglutinin: comparison with influenza A and B virus hemagglutinins. J Virol. 1984 Apr;50(1):118–124. doi: 10.1128/jvi.50.1.118-124.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Opstelten D. J., de Groote P., Horzinek M. C., Vennema H., Rottier P. J. Disulfide bonds in folding and transport of mouse hepatitis coronavirus glycoproteins. J Virol. 1993 Dec;67(12):7394–7401. doi: 10.1128/jvi.67.12.7394-7401.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parker M. D., Cox G. J., Deregt D., Fitzpatrick D. R., Babiuk L. A. Cloning and in vitro expression of the gene for the E3 haemagglutinin glycoprotein of bovine coronavirus. J Gen Virol. 1989 Jan;70(Pt 1):155–164. doi: 10.1099/0022-1317-70-1-155. [DOI] [PubMed] [Google Scholar]
- Pfeifer J. B., Compans R. W. Structure of the influenza C glycoprotein gene as determined from cloned DNA. Virus Res. 1984;1(4):281–296. doi: 10.1016/0168-1702(84)90017-0. [DOI] [PubMed] [Google Scholar]
- Pfleiderer M., Routledge E., Herrler G., Siddell S. G. High level transient expression of the murine coronavirus haemagglutinin-esterase. J Gen Virol. 1991 Jun;72(Pt 6):1309–1315. doi: 10.1099/0022-1317-72-6-1309. [DOI] [PubMed] [Google Scholar]
- Snijder E. J., Den Boon J. A., Spaan W. J., Weiss M., Horzinek M. C. Primary structure and post-translational processing of the Berne virus peplomer protein. Virology. 1990 Oct;178(2):355–363. doi: 10.1016/0042-6822(90)90332-L. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snijder E. J., Horzinek M. C., Spaan W. J. A 3'-coterminal nested set of independently transcribed mRNAs is generated during Berne virus replication. J Virol. 1990 Jan;64(1):331–338. doi: 10.1128/jvi.64.1.331-338.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snijder E. J., den Boon J. A., Horzinek M. C., Spaan W. J. Comparison of the genome organization of toro- and coronaviruses: evidence for two nonhomologous RNA recombination events during Berne virus evolution. Virology. 1991 Jan;180(1):448–452. doi: 10.1016/0042-6822(91)90056-H. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snijder E. J., den Boon J. A., Spaan W. J., Verjans G. M., Horzinek M. C. Identification and primary structure of the gene encoding the Berne virus nucleocapsid protein. J Gen Virol. 1989 Dec;70(Pt 12):3363–3370. doi: 10.1099/0022-1317-70-12-3363. [DOI] [PubMed] [Google Scholar]
- Stoddart A., Zhang Y., Paige C. J. Molecular cloning of the cDNA encoding a murine sialic acid-specific 9-O-acetylesterase and RNA expression in cells of hematopoietic and non-hematopoietic origin. Nucleic Acids Res. 1996 Oct 15;24(20):4003–4008. doi: 10.1093/nar/24.20.4003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strauss J. H., Strauss E. G. Evolution of RNA viruses. Annu Rev Microbiol. 1988;42:657–683. doi: 10.1146/annurev.mi.42.100188.003301. [DOI] [PubMed] [Google Scholar]
- Strobl B., Vlasak R. The receptor-destroying enzyme of influenza C virus is required for entry into target cells. Virology. 1993 Feb;192(2):679–682. doi: 10.1006/viro.1993.1087. [DOI] [PubMed] [Google Scholar]
- Sugiyama K., Amano Y. Morphological and biological properties of a new coronavirus associated with diarrhea in infant mice. Arch Virol. 1981;67(3):241–251. doi: 10.1007/BF01318134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vennema H., Godeke G. J., Rossen J. W., Voorhout W. F., Horzinek M. C., Opstelten D. J., Rottier P. J. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J. 1996 Apr 15;15(8):2020–2028. doi: 10.1002/j.1460-2075.1996.tb00553.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vlasak R., Krystal M., Nacht M., Palese P. The influenza C virus glycoprotein (HE) exhibits receptor-binding (hemagglutinin) and receptor-destroying (esterase) activities. Virology. 1987 Oct;160(2):419–425. doi: 10.1016/0042-6822(87)90013-4. [DOI] [PubMed] [Google Scholar]
- Vlasak R., Luytjes W., Leider J., Spaan W., Palese P. The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. J Virol. 1988 Dec;62(12):4686–4690. doi: 10.1128/jvi.62.12.4686-4690.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vlasak R., Luytjes W., Spaan W., Palese P. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4526–4529. doi: 10.1073/pnas.85.12.4526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vlasak R., Muster T., Lauro A. M., Powers J. C., Palese P. Influenza C virus esterase: analysis of catalytic site, inhibition, and possible function. J Virol. 1989 May;63(5):2056–2062. doi: 10.1128/jvi.63.5.2056-2062.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagaman P. C., Spence H. A., O'Callaghan R. J. Detection of influenza C virus by using an in situ esterase assay. J Clin Microbiol. 1989 May;27(5):832–836. doi: 10.1128/jcm.27.5.832-836.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss M., Horzinek M. C. Morphogenesis of Berne virus (proposed family Toroviridae). J Gen Virol. 1986 Jul;67(Pt 7):1305–1314. doi: 10.1099/0022-1317-67-7-1305. [DOI] [PubMed] [Google Scholar]
- Weiss M., Horzinek M. C. The proposed family Toroviridae: agents of enteric infections. Brief review. Arch Virol. 1987;92(1-2):1–15. doi: 10.1007/BF01310058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss M., Steck F., Horzinek M. C. Purification and partial characterization of a new enveloped RNA virus (Berne virus). J Gen Virol. 1983 Sep;64(Pt 9):1849–1858. doi: 10.1099/0022-1317-64-9-1849. [DOI] [PubMed] [Google Scholar]
- Woode G. N., Reed D. E., Runnels P. L., Herrig M. A., Hill H. T. Studies with an unclassified virus isolated from diarrheic calves. Vet Microbiol. 1982 Jul;7(3):221–240. doi: 10.1016/0378-1135(82)90036-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woode G. N., Saif L. J., Quesada M., Winand N. J., Pohlenz J. F., Gourley N. K. Comparative studies on three isolates of Breda virus of calves. Am J Vet Res. 1985 May;46(5):1003–1010. [PubMed] [Google Scholar]
- von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]