Abstract
1. The dihydropyridine Ca2+ channel agonist Bay K 8644 (10-200 microM) produced a concentration-dependent increase in State 4 respiration in the rat heart mitochondria with the highest concentration (200 microM) increasing the rate from 33.1 +/- 0.7 to 187.0 +/- 13.3 ng atoms O2 consumed min-1 mg-1 protein. 2. Bay K 8644 (200 microM) reduced State 3 respiration from 247.2 +/- 11.7 to 174.4 +/- 0.06 ng atoms O2 min-1 mg-1 protein, reduced the respiratory control index (RCI) from 5.3 +/- 0.45 to 1.1 +/- 0.03 and reduced the ADP:O ratio from 2.75 +/- 0.03 to 1.3 +/- 0.15. 3. A similar, but smaller, stimulation of State 4 respiration was seen with nitrendipine (25-200 microM), the rate increasing from 22.6 +/- 1.0 to 33.1 +/- 1.8 ng atoms O2 consumed min-1 mg-1 protein in the presence of 200 microM nitrendipine. 4. Bay K 8644 (10-60 microM) increased the total Ca2+ uptake into rat heart mitochondria, the total increasing from 248.8 +/- 8.4 to 406.9 +/- 17.6 ng Ca2+ mg-1 protein at 60 microM Bay K 8644 (EC50 = 18.9 +/- 1.4 microM). 5. Bay K 8644 (10-60 microM) produced a concentration-dependent reduction in the Ca2+ influx rate (IC50 = 52.5 +/- 2.8 microM). Similar effects were seen with (+)-Bay K 8644 and (-)-Bay K 8644. 6. Nitrendipine (40-120 microM) stimulated Ca2+ efflux from mitochondria preloaded with the ion; the efflux rate increasing from 2.9 +/- 0.05 to 114.2 +/- 6.2 nmol Ca2+ min-1 mg-1 protein (EC50 = 57.3 +/- 1.3 microM).(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Affolter H., Carafoli E. The Ca2+-Na+ antiporter of heart mitochondria operates electroneutrally. Biochem Biophys Res Commun. 1980 Jul 16;95(1):193–196. doi: 10.1016/0006-291x(80)90723-8. [DOI] [PubMed] [Google Scholar]
- Allen D. G., Orchard C. H. Myocardial contractile function during ischemia and hypoxia. Circ Res. 1987 Feb;60(2):153–168. doi: 10.1161/01.res.60.2.153. [DOI] [PubMed] [Google Scholar]
- Baydoun A. R., Markham A., Morgan R. M., Sweetman A. J. Palmitoyl carnitine: an endogenous promotor of calcium efflux from rat heart mitochondria. Biochem Pharmacol. 1988 Aug 15;37(16):3103–3107. doi: 10.1016/0006-2952(88)90307-3. [DOI] [PubMed] [Google Scholar]
- Bourdillon P. D., Poole-Wilson P. A. Effects of ischaemia and reperfusion on calcium exchange and mechanical function in isolated rabbit myocardium. Cardiovasc Res. 1981 Mar;15(3):121–130. doi: 10.1093/cvr/15.3.121. [DOI] [PubMed] [Google Scholar]
- Brierley G. P. The uptake and extrusion of monovalent cations by isolated heart mitochondria. Mol Cell Biochem. 1976 Jan 31;10(1):41–63. doi: 10.1007/BF01731680. [DOI] [PubMed] [Google Scholar]
- CHANCE B. THE ENERGY-LINKED REACTION OF CALCIUM WITH MITOCHONDRIA. J Biol Chem. 1965 Jun;240:2729–2748. [PubMed] [Google Scholar]
- Cheung J. Y., Bonventre J. V., Malis C. D., Leaf A. Calcium and ischemic injury. N Engl J Med. 1986 Jun 26;314(26):1670–1676. doi: 10.1056/NEJM198606263142604. [DOI] [PubMed] [Google Scholar]
- Crompton M., Kessar P., Al-Nasser I. The alpha-adrenergic-mediated activation of the cardiac mitochondrial Ca2+ uniporter and its role in the control of intramitochondrial Ca2+ in vivo. Biochem J. 1983 Nov 15;216(2):333–342. doi: 10.1042/bj2160333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crompton M., Moser R., Lüdi H., Carafoli E. The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur J Biochem. 1978 Jan 2;82(1):25–31. doi: 10.1111/j.1432-1033.1978.tb11993.x. [DOI] [PubMed] [Google Scholar]
- De Jong J. W., Harmsen E., De Tombe P. P. Diltiazem administered before or during myocardial ischemia decreases adenine nucleotide catabolism. J Mol Cell Cardiol. 1984 Apr;16(4):363–370. doi: 10.1016/s0022-2828(84)80607-0. [DOI] [PubMed] [Google Scholar]
- Denton R. M., McCormack J. G. Ca2+ transport by mammalian mitochondria and its role in hormone action. Am J Physiol. 1985 Dec;249(6 Pt 1):E543–E554. doi: 10.1152/ajpendo.1985.249.6.E543. [DOI] [PubMed] [Google Scholar]
- Denton R. M., McCormack J. G., Edgell N. J. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J. 1980 Jul 15;190(1):107–117. doi: 10.1042/bj1900107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denton R. M., McCormack J. G. The calcium sensitive dehydrogenases of vertebrate mitochondria. Cell Calcium. 1986 Dec;7(5-6):377–386. doi: 10.1016/0143-4160(86)90040-0. [DOI] [PubMed] [Google Scholar]
- Fiskum G., Reynafarje B., Lehninger A. L. The electric charge stoichiometry of respiration-dependent Ca2+ uptake by mitochondria. J Biol Chem. 1979 Jul 25;254(14):6288–6295. [PubMed] [Google Scholar]
- Godfraind T., Miller R., Wibo M. Calcium antagonism and calcium entry blockade. Pharmacol Rev. 1986 Dec;38(4):321–416. [PubMed] [Google Scholar]
- Hansford R. G. Relation between mitochondrial calcium transport and control of energy metabolism. Rev Physiol Biochem Pharmacol. 1985;102:1–72. doi: 10.1007/BFb0034084. [DOI] [PubMed] [Google Scholar]
- Hayat L. H., Crompton M. Evidence for the existence of regulatory sites for Ca2+ on the Na+/Ca2+ carrier of cardiac mitochondria. Biochem J. 1982 Feb 15;202(2):509–518. doi: 10.1042/bj2020509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
- Jurkowitz M. S., Geisbuhler T., Jung D. W., Brierley G. P. Ruthenium red-sensitive and -insensitive release of Ca2+ from uncoupled heart mitochondria. Arch Biochem Biophys. 1983 May;223(1):120–128. doi: 10.1016/0003-9861(83)90577-5. [DOI] [PubMed] [Google Scholar]
- Leblondel G., Allain P. Ca2+ uptake and energy supply of sheep heart mitochondria in presence of some calcium antagonists. Res Commun Chem Pathol Pharmacol. 1984 Jun;44(3):499–502. [PubMed] [Google Scholar]
- Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
- Lehninger A. L., Vercesi A., Bababunmi E. A. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1690–1694. doi: 10.1073/pnas.75.4.1690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lochner A., van der Merwe N., de Villiers M., Steinmann C., Kotzé J. C. Mitochondrial Ca2+ fluxes and levels during ischaemia and reperfusion: possible mechanisms. Biochim Biophys Acta. 1987 Jan 19;927(1):8–17. doi: 10.1016/0167-4889(87)90060-7. [DOI] [PubMed] [Google Scholar]
- Lukács G. L., Fonyó A. The Ba2+ sensitivity of the Na+-induced Ca2+ efflux in heart mitochondria: the site of inhibitory action. Biochim Biophys Acta. 1986 Jun 13;858(1):125–134. doi: 10.1016/0005-2736(86)90298-1. [DOI] [PubMed] [Google Scholar]
- Lüllmann H., Timmermans P. B., Ziegler A. Accumulation of drugs by resting or beating cardiac tissue. Eur J Pharmacol. 1979 Dec 20;60(4):277–285. doi: 10.1016/0014-2999(79)90231-0. [DOI] [PubMed] [Google Scholar]
- Matlib M. A. Action of bepridil, a new calcium channel blocker on oxidative phosphorylation, oligomycin-sensitive adenosine triphosphatase activity, swelling, Ca++ uptake and Na+-induced Ca++ release processes of rabbit heart mitochondria in vitro. J Pharmacol Exp Ther. 1985 May;233(2):376–381. [PubMed] [Google Scholar]
- McCormack J. G., Denton R. M. Hormonal control of intramitochondrial Ca2+-sensitive enzymes in heart, liver and adipose tissue. Biochem Soc Trans. 1985 Aug;13(4):664–667. doi: 10.1042/bst0130664. [DOI] [PubMed] [Google Scholar]
- Nakajima H., Hoshiyama M., Yamashita K., Kiyomoto A. Effect of diltiazem on electrical and mechanical activity of isolated cardiac ventricular muscle of guinea pig. Jpn J Pharmacol. 1975 Aug;25(4):383–392. doi: 10.1254/jjp.25.383. [DOI] [PubMed] [Google Scholar]
- Nakanishi T., Nishioka K., Jarmakani J. M. Mechanism of tissue Ca2+ gain during reoxygenation after hypoxia in rabbit myocardium. Am J Physiol. 1982 Mar;242(3):H437–H449. doi: 10.1152/ajpheart.1982.242.3.H437. [DOI] [PubMed] [Google Scholar]
- Nicholls D. G. Calcium transport and porton electrochemical potential gradient in mitochondria from guinea-pig cerebral cortex and rat heart. Biochem J. 1978 Mar 15;170(3):511–522. doi: 10.1042/bj1700511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicholls D. G. The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J. 1978 Nov 15;176(2):463–474. doi: 10.1042/bj1760463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nigdikar S. V., Bowditch J., Dow J. W. Calcium antagonists and adenine nucleotide metabolism in rat heart. Cardiovasc Res. 1986 Aug;20(8):604–608. doi: 10.1093/cvr/20.8.604. [DOI] [PubMed] [Google Scholar]
- Pang D. C., Sperelakis N. Uptake of [3H]nitrendipine into cardiac and smooth muscles. Biochem Pharmacol. 1983 May 15;32(10):1660–1663. doi: 10.1016/0006-2952(83)90347-7. [DOI] [PubMed] [Google Scholar]
- Piper H. M., Sezer O., Schleyer M., Schwartz P., Hütter J. F., Spieckermann P. G. Development of ischemia-induced damage in defined mitochondrial subpopulations. J Mol Cell Cardiol. 1985 Sep;17(9):885–896. doi: 10.1016/s0022-2828(85)80102-4. [DOI] [PubMed] [Google Scholar]
- Reed K. C., Bygrave F. L. The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem J. 1974 May;140(2):143–155. doi: 10.1042/bj1400143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Regitz V., Paulson D. J., Hodach R. J., Little S. E., Schaper W., Shug A. L. Mitochondrial damage during myocardial ischemia. Basic Res Cardiol. 1984 Mar-Apr;79(2):207–217. doi: 10.1007/BF01908307. [DOI] [PubMed] [Google Scholar]
- Sato M., Nagao T., Yamaguchi I., Nakajima H., Kiyomoto A. Pharmacological studies on a new l,5-benzothiazepine derivative (CRD-401). Arzneimittelforschung. 1971 Sep;21(9):1338–1343. [PubMed] [Google Scholar]
- Schramm M., Thomas G., Towart R., Franckowiak G. Activation of calcium channels by novel 1,4-dihydropyridines. A new mechanism for positive inotropics or smooth muscle stimulants. Arzneimittelforschung. 1983;33(9):1268–1272. [PubMed] [Google Scholar]
- Schwartz A., Wood J. M., Allen J. C., Bornet E. P., Entman M. L., Goldstein M. A., Sordahl L. A., Suzuki M. Biochemical and morphologic correlates of cardiac ischemia. I. Membrane systems. Am J Cardiol. 1973 Jul;32(1):46–61. doi: 10.1016/s0002-9149(73)80085-2. [DOI] [PubMed] [Google Scholar]
- Shen A. C., Jennings R. B. Kinetics of calcium accumulation in acute myocardial ischemic injury. Am J Pathol. 1972 Jun;67(3):441–452. [PMC free article] [PubMed] [Google Scholar]
- Spedding M. Antagonists and activators at calcium channels. Effects in the gastrointestinal tract. Ann N Y Acad Sci. 1988;522:248–258. doi: 10.1111/j.1749-6632.1988.tb33362.x. [DOI] [PubMed] [Google Scholar]
- Spedding M., Berg C. Interactions between a "calcium channel agonist", Bay K 8644, and calcium antagonists differentiate calcium antagonist subgroups in K+-depolarized smooth muscle. Naunyn Schmiedebergs Arch Pharmacol. 1984 Nov;328(1):69–75. doi: 10.1007/BF00496109. [DOI] [PubMed] [Google Scholar]
- Spedding M., Mir A. K. Direct activation of Ca2+ channels by palmitoyl carnitine, a putative endogenous ligand. Br J Pharmacol. 1987 Oct;92(2):457–468. doi: 10.1111/j.1476-5381.1987.tb11343.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tagami M., Nara Y., Kubota A., Sunaga T., Maezawa H., Horie R., Yamori Y. Electronmicroscopic autoradiographic study of the distribution of 3H-diltiazem in myocardial cells. Jpn Heart J. 1985 Sep;26(5):823–832. doi: 10.1536/ihj.26.823. [DOI] [PubMed] [Google Scholar]
- Thurman R. G., Apel E., Badr M., Lemasters J. L. Protection of liver by calcium entry blockers. Ann N Y Acad Sci. 1988;522:757–770. doi: 10.1111/j.1749-6632.1988.tb33427.x. [DOI] [PubMed] [Google Scholar]
- Vaghy P. L., Itagaki K., Miwa K., McKenna E., Schwartz A. Mechanism of action of calcium channel modulator drugs. Identification of a unique, labile, drug-binding polypeptide in a purified calcium channel preparation. Ann N Y Acad Sci. 1988;522:176–186. doi: 10.1111/j.1749-6632.1988.tb33353.x. [DOI] [PubMed] [Google Scholar]
- Vercesi A., Reynafarje B., Lehninger A. L. Stoichiometry of H+ ejection and Ca2+ uptake coupled to electron transport in rat heart mitochondria. J Biol Chem. 1978 Sep 25;253(18):6379–6385. [PubMed] [Google Scholar]
- Watts J., Maiorano P., Harwell T. Comparison of the effects of bepridil and diltiazem upon globally ischemic rat hearts. Eur J Pharmacol. 1987 Jan 28;134(1):25–33. doi: 10.1016/0014-2999(87)90127-0. [DOI] [PubMed] [Google Scholar]
- Wolkowicz P. E., Michael L. H., Lewis R. M., McMillin-Wood J. Sodium-calcium exchange in dog heart mitochondria: effects of ischemia and verapamil. Am J Physiol. 1983 May;244(5):H644–H651. doi: 10.1152/ajpheart.1983.244.5.H644. [DOI] [PubMed] [Google Scholar]
