Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 Oct;101(2):489–493. doi: 10.1111/j.1476-5381.1990.tb12735.x

The crucial role of physiological Ca2+ concentrations in the production of endothelial nitric oxide and the control of vascular tone.

P Lopez-Jaramillo 1, M C Gonzalez 1, R M Palmer 1, S Moncada 1
PMCID: PMC1917700  PMID: 2257446

Abstract

1. The effect of varying the extracellular Ca2+ concentration on the basal and acetylcholine (ACh)-induced release of nitric oxide (NO) from the rabbit aorta was investigated by use of a superfusion bioassay system. 2. Changes between 0.5 and 2.0 mM in the concentration of Ca2+ superfusing the detector bioassay tissues or perfusing endothelium-denuded donor aortae had no effect on the tone of these tissues. 3. Increasing the concentration of Ca2+ perfusing endothelium-containing donor aortae from zero to 1.25 mM caused a transient (24 +/- 9 min), concentration-dependent basal release of NO, which was attenuated at higher concentrations of Ca2+ (1.5-2.0 mM). 4. The duration of the effect of Ca2+ on the basal release of NO was increased by a concomitant infusion of L-arginine (100 microM) through the donor aorta. 5. Changes in the concentration of Ca2+ between 0.5 and 2.0 mM had a similar biphasic effect on the release of NO induced by ACh, which was also maximal at 1.25 mM Ca2+. 6. When Ca2+ was removed from the Krebs buffer perfusing the donor aorta, the basal release of NO declined within 2 min. In contrast, the release of NO induced by ACh declined progressively over 60 min. 7. Thus changes in the concentration of Ca2+ around the physiological range modulate the synthesis of NO by the vascular endothelium and consequently, vascular tone. This may account for the effects of dietary Ca2+ supplements on the control of some hypertensive states.

Full text

PDF
489

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando J., Komatsuda T., Kamiya A. Cytoplasmic calcium response to fluid shear stress in cultured vascular endothelial cells. In Vitro Cell Dev Biol. 1988 Sep;24(9):871–877. doi: 10.1007/BF02623896. [DOI] [PubMed] [Google Scholar]
  2. Ayachi S. Increased dietary calcium lowers blood pressure in the spontaneously hypertensive rat. Metabolism. 1979 Dec;28(12):1234–1238. doi: 10.1016/0026-0495(79)90136-7. [DOI] [PubMed] [Google Scholar]
  3. Belizán J. M., Villar J. The relationship between calcium intake and edema-, proteinuria-, and hypertension-getosis: an hypothesis. Am J Clin Nutr. 1980 Oct;33(10):2202–2210. doi: 10.1093/ajcn/33.10.2202. [DOI] [PubMed] [Google Scholar]
  4. Danthuluri N. R., Cybulsky M. I., Brock T. A. ACh-induced calcium transients in primary cultures of rabbit aortic endothelial cells. Am J Physiol. 1988 Dec;255(6 Pt 2):H1549–H1553. doi: 10.1152/ajpheart.1988.255.6.H1549. [DOI] [PubMed] [Google Scholar]
  5. Furspan P. B., Rinaldi G. J., Hoffman K., Bohr D. F. Dietary calcium and cell membrane abnormality in genetic hypertension. Hypertension. 1989 Jun;13(6 Pt 2):727–730. doi: 10.1161/01.hyp.13.6.727. [DOI] [PubMed] [Google Scholar]
  6. Gardiner S. M., Compton A. M., Bennett T., Palmer R. M., Moncada S. Control of regional blood flow by endothelium-derived nitric oxide. Hypertension. 1990 May;15(5):486–492. doi: 10.1161/01.hyp.15.5.486. [DOI] [PubMed] [Google Scholar]
  7. Grobbee D. E., Hofman A. Effect of calcium supplementation on diastolic blood pressure in young people with mild hypertension. Lancet. 1986 Sep 27;2(8509):703–707. doi: 10.1016/s0140-6736(86)90228-x. [DOI] [PubMed] [Google Scholar]
  8. Hatton D. C., Scrogin K. E., Metz J. A., McCarron D. A. Dietary calcium alters blood pressure reactivity in spontaneously hypertensive rats. Hypertension. 1989 Jun;13(6 Pt 1):622–629. doi: 10.1161/01.hyp.13.6.622. [DOI] [PubMed] [Google Scholar]
  9. Kesteloot H., Joossens J. V. Relationship of dietary sodium, potassium, calcium, and magnesium with blood pressure. Belgian Interuniversity Research on Nutrition and Health. Hypertension. 1988 Dec;12(6):594–599. doi: 10.1161/01.hyp.12.6.594. [DOI] [PubMed] [Google Scholar]
  10. Knowles R. G., Palacios M., Palmer R. M., Moncada S. Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5159–5162. doi: 10.1073/pnas.86.13.5159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lansman J. B., Hallam T. J., Rink T. J. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? 1987 Feb 26-Mar 4Nature. 325(6107):811–813. doi: 10.1038/325811a0. [DOI] [PubMed] [Google Scholar]
  12. Lau K., Chen S., Eby B. Evidence for the role of PO4 deficiency in antihypertensive action of a high-Ca diet. Am J Physiol. 1984 Mar;246(3 Pt 2):H324–H331. doi: 10.1152/ajpheart.1984.246.3.H324. [DOI] [PubMed] [Google Scholar]
  13. Lopez-Jaramillo P., Guarner F., Moncada S. Effects of calcium and parathyroid hormone on prostacyclin synthesis by vascular tissue. Life Sci. 1987 Mar 9;40(10):983–986. doi: 10.1016/0024-3205(87)90320-1. [DOI] [PubMed] [Google Scholar]
  14. Lopez-Jaramillo P., Narvaez M., Felix C., Lopez A. Dietary calcium supplementation and prevention of pregnancy hypertension. Lancet. 1990 Feb 3;335(8684):293–293. doi: 10.1016/0140-6736(90)90112-i. [DOI] [PubMed] [Google Scholar]
  15. Lopez-Jaramillo P., Narvaez M., Yepez R. Effect of calcium supplementation on the vascular sensitivity to angiotensin II in pregnant women. Am J Obstet Gynecol. 1987 Jan;156(1):261–262. doi: 10.1016/0002-9378(87)90259-6. [DOI] [PubMed] [Google Scholar]
  16. López-Jaramillo P., Narváez M., Weigel R. M., Yépez R. Calcium supplementation reduces the risk of pregnancy-induced hypertension in an Andes population. Br J Obstet Gynaecol. 1989 Jun;96(6):648–655. [PubMed] [Google Scholar]
  17. Lückhoff A., Pohl U., Mülsch A., Busse R. Differential role of extra- and intracellular calcium in the release of EDRF and prostacyclin from cultured endothelial cells. Br J Pharmacol. 1988 Sep;95(1):189–196. doi: 10.1111/j.1476-5381.1988.tb16564.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Marya R. K., Rathee S., Manrow M. Effect of calcium and vitamin D supplementation on toxaemia of pregnancy. Gynecol Obstet Invest. 1987;24(1):38–42. doi: 10.1159/000298772. [DOI] [PubMed] [Google Scholar]
  19. Mayer B., Schmidt K., Humbert P., Böhme E. Biosynthesis of endothelium-derived relaxing factor: a cytosolic enzyme in porcine aortic endothelial cells Ca2+-dependently converts L-arginine into an activator of soluble guanylyl cyclase. Biochem Biophys Res Commun. 1989 Oct 31;164(2):678–685. doi: 10.1016/0006-291x(89)91513-1. [DOI] [PubMed] [Google Scholar]
  20. McCarron D. A. Low serum concentrations of ionized calcium in patients with hypertension. N Engl J Med. 1982 Jul 22;307(4):226–228. doi: 10.1056/NEJM198207223070405. [DOI] [PubMed] [Google Scholar]
  21. McCarron D. A., Morris C. D., Bukoski R. The calcium paradox of essential hypertension. Am J Med. 1987 Jan 26;82(1B):27–33. doi: 10.1016/0002-9343(87)90268-3. [DOI] [PubMed] [Google Scholar]
  22. McCarron D. A., Morris C. D., Cole C. Dietary calcium in human hypertension. Science. 1982 Jul 16;217(4556):267–269. doi: 10.1126/science.7089566. [DOI] [PubMed] [Google Scholar]
  23. Moncada S., Radomski M. W., Palmer R. M. Endothelium-derived relaxing factor. Identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem Pharmacol. 1988 Jul 1;37(13):2495–2501. doi: 10.1016/0006-2952(88)90236-5. [DOI] [PubMed] [Google Scholar]
  24. Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
  25. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  26. Palmer R. M., Moncada S. A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells. Biochem Biophys Res Commun. 1989 Jan 16;158(1):348–352. doi: 10.1016/s0006-291x(89)80219-0. [DOI] [PubMed] [Google Scholar]
  27. Palmer R. M., Rees D. D., Ashton D. S., Moncada S. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun. 1988 Jun 30;153(3):1251–1256. doi: 10.1016/s0006-291x(88)81362-7. [DOI] [PubMed] [Google Scholar]
  28. Pitkin R. M., Gebhardt M. P. Serum calcium concentrations in human pregnancy. Am J Obstet Gynecol. 1977 Apr 1;127(7):775–778. doi: 10.1016/0002-9378(77)90256-3. [DOI] [PubMed] [Google Scholar]
  29. Rees D. D., Palmer R. M., Hodson H. F., Moncada S. A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br J Pharmacol. 1989 Feb;96(2):418–424. doi: 10.1111/j.1476-5381.1989.tb11833.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rees D. D., Palmer R. M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989 May;86(9):3375–3378. doi: 10.1073/pnas.86.9.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Resnick L. M., Nicholson J. P., Laragh J. H. Calcium metabolism in essential hypertension: relationship to altered renin system activity. Fed Proc. 1986 Nov;45(12):2739–2745. [PubMed] [Google Scholar]
  32. Resnick L. M. Uniformity and diversity of calcium metabolism in hypertension. A conceptual framework. Am J Med. 1987 Jan 26;82(1B):16–26. doi: 10.1016/0002-9343(87)90267-1. [DOI] [PubMed] [Google Scholar]
  33. Vallance P., Collier J., Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet. 1989 Oct 28;2(8670):997–1000. doi: 10.1016/s0140-6736(89)91013-1. [DOI] [PubMed] [Google Scholar]
  34. Villar J., Repke J., Belizan J. M., Pareja G. Calcium supplementation reduces blood pressure during pregnancy: results of a randomized controlled clinical trial. Obstet Gynecol. 1987 Sep;70(3 Pt 1):317–322. [PubMed] [Google Scholar]
  35. White D. G., Martin W. Differential control and calcium-dependence of production of endothelium-derived relaxing factor and prostacyclin by pig aortic endothelial cells. Br J Pharmacol. 1989 Jul;97(3):683–690. doi: 10.1111/j.1476-5381.1989.tb12004.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Whittle B. J., Lopez-Belmonte J., Rees D. D. Modulation of the vasodepressor actions of acetylcholine, bradykinin, substance P and endothelin in the rat by a specific inhibitor of nitric oxide formation. Br J Pharmacol. 1989 Oct;98(2):646–652. doi: 10.1111/j.1476-5381.1989.tb12639.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zaloga G. P., Willey S., Malcolm D., Chernow B., Holaday J. W. Hypercalcemia attenuates blood pressure response to epinephrine. J Pharmacol Exp Ther. 1988 Dec;247(3):949–952. [PubMed] [Google Scholar]
  38. Zemel M. B., Gualdoni S. M., Sowers J. R. Reductions in total and extracellular water associated with calcium-induced natriuresis and the antihypertensive effect of calcium in blacks. Am J Hypertens. 1988 Jan;1(1):70–72. doi: 10.1093/ajh/1.1.70. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES