Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 Oct;101(2):263–268. doi: 10.1111/j.1476-5381.1990.tb12698.x

Thermal trauma alters myocardial cyclic nucleotides and protein content in mice.

J F Tomera 1, J A Martyn 1
PMCID: PMC1917703  PMID: 2175230

Abstract

1. This study tested the hypothesis that the systemic effects of burn include altered metabolic activity in the heart. Metabolic activity was studied by measuring alterations in cyclic nucleotide levels and protein concentrations in atrial and ventricular muscle in mice at 14 and 22 days after a 20% body surface area (BSA) burn. Thermal injury was produced on the dorsal surface of anesthetized male CD mice by immersion in water at 95 degrees C for 8 s. This resulted in a full-thickness, 3 degrees scald burn. In atrial and ventricular tissues, levels of adenosine 3':5'-cyclic monophosphate (cyclic AMP) and guanosine 3':5'-cyclic monophosphate (cyclic GMP) were analyzed by 125I-radioimmunoassay. 2. The protein content (mg prot g-1 dry wt) increased in the atria. The cyclic AMP content (nmol g-1 dry wt) was significantly increased fourfold and ninefold at 14 and 22 days, respectively, in atria from burned animals compared to controls. The cyclic AMP/cyclic GMP ratios were similarly increased. 3. In the ventricle, the protein content and cyclic AMP levels were not altered, but the cyclic AMP/cyclic GMP ratios (nmol g-1 dry wt) were increased at both 14 and 22 days. These changes both in atria and ventricles were less prominent when cyclic nucleotide concentrations or ratios were expressed as pmol mg-1 protein. 4. The data confirm the hypothesis that a 20% BSA thermal injury evokes effects in sites remote from burn injury such as in the atria and ventricles.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
263

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amer M. S. Cyclic nucleotides in disease; on the biochemical etiology of hypertension. Life Sci. 1975 Oct 10;17(7):1021–1038. doi: 10.1016/0024-3205(75)90321-5. [DOI] [PubMed] [Google Scholar]
  2. Aprille J. R., Aikawa N., Bell T. C., Bode H. H., Malamud D. F. Adenylate cyclase after burn injury: resistance to desensitization by catecholamines. J Trauma. 1979 Nov;19(11):812–818. doi: 10.1097/00005373-197911000-00003. [DOI] [PubMed] [Google Scholar]
  3. Baxter C. R., Cook W. A., Shires G. T. Serum myocardial depressant factor of burn shock. Surg Forum. 1966;17:1–2. [PubMed] [Google Scholar]
  4. Benfey B. G., Varma D. R., Yue T. L. Myocardial inotropic responses and adrenoceptors in protein-deficient rats. Br J Pharmacol. 1983 Nov;80(3):527–531. doi: 10.1111/j.1476-5381.1983.tb10725.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Entman M. L. The role of cyclic AMP in the modulation of cardiac contractility. Adv Cyclic Nucleotide Res. 1974;4(0):163–193. [PubMed] [Google Scholar]
  6. Hilton J. G., Marullo D. S. Effects of thermal trauma on cardiac force of contraction. Burns Incl Therm Inj. 1986 Feb;12(3):167–171. doi: 10.1016/0305-4179(86)90154-3. [DOI] [PubMed] [Google Scholar]
  7. Hoffman M. J., Greenfield L. J., Sugerman H. J., Tatum J. L. Unsuspected right ventricular dysfunction in shock and sepsis. Ann Surg. 1983 Sep;198(3):307–319. doi: 10.1097/00000658-198309000-00007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Linden J. Enhanced cAMP accumulation after termination of cholinergic action in the heart. FASEB J. 1987 Aug;1(2):119–124. doi: 10.1096/fasebj.1.2.2440752. [DOI] [PubMed] [Google Scholar]
  10. Martyn J. A., Snider M. T., Farago L. F., Burke J. F. Thermodilution right ventricular volume: a novel and better predictor of volume replacement in acute thermal injury. J Trauma. 1981 Aug;21(8):619–626. [PubMed] [Google Scholar]
  11. Martyn J. A., Snider M. T., Szyfelbein S. K., Burke J. F., Laver M. B. Right ventricular dysfunction in acute thermal injury. Ann Surg. 1980 Mar;191(3):330–335. doi: 10.1097/00000658-198003000-00012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Martyn J., Wilson R. S., Burke J. F. Right ventricular function and pulmonary hemodynamics during dopamine infusion in burned patients. Chest. 1986 Mar;89(3):357–360. doi: 10.1378/chest.89.3.357. [DOI] [PubMed] [Google Scholar]
  13. Motulsky H. J., Insel P. A. Adrenergic receptors in man: direct identification, physiologic regulation, and clinical alterations. N Engl J Med. 1982 Jul 1;307(1):18–29. doi: 10.1056/NEJM198207013070104. [DOI] [PubMed] [Google Scholar]
  14. Rasmussen H., Goodman D. B., Tenenhouse A. The role of cyclic AMP and calcium in cell activation. CRC Crit Rev Biochem. 1972 Feb;1(1):95–148. doi: 10.3109/10409237209102545. [DOI] [PubMed] [Google Scholar]
  15. Schaub M. C., Kunz B. Regulation of contraction in cardiac and smooth muscles. J Cardiovasc Pharmacol. 1986;8 (Suppl 8):S117–S123. doi: 10.1097/00005344-198600088-00024. [DOI] [PubMed] [Google Scholar]
  16. Schildt B., Nilsson A. Standardized burns in mice. Eur Surg Res. 1970;2(1):23–33. doi: 10.1159/000127494. [DOI] [PubMed] [Google Scholar]
  17. Shangraw R. E., Turinsky J. Effect of disuse and thermal injury on protein turnover in skeletal muscle. J Surg Res. 1982 Oct;33(4):345–355. doi: 10.1016/0022-4804(82)90048-8. [DOI] [PubMed] [Google Scholar]
  18. Shepherd R. E., McDonough K. H., Burns A. H. Mechanism of cardiac dysfunction in hearts from endotoxin-treated rats. Circ Shock. 1986;19(4):371–384. [PubMed] [Google Scholar]
  19. Steiner A. L., Parker C. W., Kipnis D. M. Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem. 1972 Feb 25;247(4):1106–1113. [PubMed] [Google Scholar]
  20. Tomera J. F., Martyn J., Hoaglin D. C. Neuromuscular dysfunction in burns and its relationship to burn size, hypermetabolism, and immunosuppression. J Trauma. 1988 Oct;28(10):1499–1504. doi: 10.1097/00005373-198810000-00018. [DOI] [PubMed] [Google Scholar]
  21. Tomera J. F., Martyn J. Intraperitoneal endotoxin but not protein malnutrition shifts d-tubocurarine dose-response curves in mouse gastrocnemius muscle. J Pharmacol Exp Ther. 1989 Jul;250(1):216–220. [PubMed] [Google Scholar]
  22. Tomera J. F., Martyn J. Mediators of burn-induced neuromuscular changes in mice. Br J Pharmacol. 1989 Nov;98(3):921–929. doi: 10.1111/j.1476-5381.1989.tb14622.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wilmore D. W., Long J. M., Mason A. D., Jr, Skreen R. W., Pruitt B. A., Jr Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg. 1974 Oct;180(4):653–669. doi: 10.1097/00000658-197410000-00031. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES