Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 Nov;101(3):722–726. doi: 10.1111/j.1476-5381.1990.tb14147.x

Endothelin and a Ca2+ ionophore raise cyclic GMP levels in a neuronal cell line via formation of nitric oxide.

G Reiser 1
PMCID: PMC1917739  PMID: 1963807

Abstract

1. The vasoconstrictor peptide endothelin-1 caused a fast, transient rise in guanosine 3':5'-cyclic monophosphate (cyclic GMP) levels in a neuronal cell line (mouse neuroblastoma x rat glioma hybrid cells 108CC15). The mechanism of activation of guanylate cyclase by endothelin-1 was investigated. The endothelin-1-induced rise depended on the release of internal Ca2+. 2. The stimulation of cyclic GMP synthesis induced by endothelin-1 was suppressed after preincubating the cells in medium containing haemoglobin (IC50 3 microM). Similarly, pretreatment of the cells with the L-arginine analogues, L-canavanine (IC50 60 microM) or NG-monomethyl-L-arginine (IC50 2.5 microM), inhibited the cyclic GMP response to endothelin-1. Therefore, endothelin-1 activates guanylate cyclase most probably via formation of nitric oxide, which is released from L-arginine. 3. The Ca2+ ionophore ionomycin induced a transient rise in cyclic GMP levels, which was also suppressed by preincubation in the presence of either haemoglobin or the L-arginine analogues L-canavanine or NG-monomethyl-L-arginine. Therefore, we conclude that ionomycin can activate guanylate cyclase by a mechanism involving nitric oxide formation, similar to that induced by endothelin-1. 4. The alkaloid veratridine, which activates Na+ channels and also causes influx of Ca2+ induced a transient rise of cyclic GMP levels in the neuronal cell line. This stimulation was blocked by pretreating the cells with L-canavanine, NG-monomethyl-L-arginine or haemoglobin. 5. Loading the cells with the Ca2+ chelator BAPTA suppresed the cyclic GMP response to application of endothelin-1, ionomycin, or veratridine.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
722

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bredt D. S., Snyder S. H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A. 1990 Jan;87(2):682–685. doi: 10.1073/pnas.87.2.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Freedman S. B., Dawson G., Villereal M. L., Miller R. J. Identification and characterization of voltage-sensitive calcium channels in neuronal clonal cell lines. J Neurosci. 1984 Jun;4(6):1453–1467. doi: 10.1523/JNEUROSCI.04-06-01453.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Furchgott R. F., Vanhoutte P. M. Endothelium-derived relaxing and contracting factors. FASEB J. 1989 Jul;3(9):2007–2018. [PubMed] [Google Scholar]
  4. Garthwaite J., Charles S. L., Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature. 1988 Nov 24;336(6197):385–388. doi: 10.1038/336385a0. [DOI] [PubMed] [Google Scholar]
  5. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  6. Hamprecht B., Glaser T., Reiser G., Bayer E., Propst F. Culture and characteristics of hormone-responsive neuroblastoma X glioma hybrid cells. Methods Enzymol. 1985;109:316–341. doi: 10.1016/0076-6879(85)09096-6. [DOI] [PubMed] [Google Scholar]
  7. Knowles R. G., Palacios M., Palmer R. M., Moncada S. Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5159–5162. doi: 10.1073/pnas.86.13.5159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McKinney M. Blockade of receptor-mediated cyclic GMP formation by hydroxyeicosatetraenoic acid. J Neurochem. 1987 Aug;49(2):331–341. doi: 10.1111/j.1471-4159.1987.tb02870.x. [DOI] [PubMed] [Google Scholar]
  9. McKinney M., Richelson E. Blockade of N1E-115 murine neuroblastoma muscarinic receptor function by agents that affect the metabolism of arachidonic acid. Biochem Pharmacol. 1986 Jul 15;35(14):2389–2397. doi: 10.1016/0006-2952(86)90466-1. [DOI] [PubMed] [Google Scholar]
  10. Moncada S., Palmer R. M., Higgs E. A. Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem Pharmacol. 1989 Jun 1;38(11):1709–1715. doi: 10.1016/0006-2952(89)90403-6. [DOI] [PubMed] [Google Scholar]
  11. Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
  12. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  13. Pollock W. K., Sage S. O., Rink T. J. Stimulation of Ca2+ efflux from fura-2-loaded platelets activated by thrombin or phorbol myristate acetate. FEBS Lett. 1987 Jan 5;210(2):132–136. doi: 10.1016/0014-5793(87)81322-4. [DOI] [PubMed] [Google Scholar]
  14. Reiser G., Binmöller F. J., Donié F. Mechanisms for activation and subsequent removal of cytosolic Ca2+ in bradykinin-stimulated neuronal and glial cell lines. Exp Cell Res. 1990 Jan;186(1):47–53. doi: 10.1016/0014-4827(90)90208-r. [DOI] [PubMed] [Google Scholar]
  15. Reiser G., Donié F., Binmöller F. J. Serotonin regulates cytosolic Ca2+ activity and membrane potential in a neuronal and in a glial cell line via 5-HT3 and 5-HT2 receptors by different mechanisms. J Cell Sci. 1989 Jul;93(Pt 3):545–555. doi: 10.1242/jcs.93.3.545. [DOI] [PubMed] [Google Scholar]
  16. Reiser G., Hamprecht B. Bradykinin causes a transient rise of intracellular Ca2+-activity in cultured neural cells. Pflugers Arch. 1985 Oct;405(3):260–264. doi: 10.1007/BF00582570. [DOI] [PubMed] [Google Scholar]
  17. Reiser G., Hamprecht B. Serotonin raises the cyclic GMP level in a neuronal cell line via 5-HT3 receptors. Eur J Pharmacol. 1989 May 11;172(2):195–198. doi: 10.1016/0922-4106(89)90010-2. [DOI] [PubMed] [Google Scholar]
  18. Reiser G., Hamprecht B. Sodium-channels in non-excitable glioma cells, shown by the influence of veratridine, scorpion toxin, and tetrodotoxin on membrane potential and on ion transport. Pflugers Arch. 1983 Jun 1;397(4):260–264. doi: 10.1007/BF00580258. [DOI] [PubMed] [Google Scholar]
  19. Reiser G. Mechanism of stimulation of cyclic-GMP level in a neuronal cell line mediated by serotonin (5-HT3) receptors. Involvement of nitric oxide, arachidonic-acid metabolism and cytosolic Ca2+. Eur J Biochem. 1990 May 20;189(3):547–552. doi: 10.1111/j.1432-1033.1990.tb15521.x. [DOI] [PubMed] [Google Scholar]
  20. Reiser G., Walter U., Hamprecht B. Bradykinin regulates the level of guanosine 3',5'-cyclic monophosphate (cyclic GMP) in neural cell lines. Brain Res. 1984 Jan 9;290(2):367–371. doi: 10.1016/0006-8993(84)90958-2. [DOI] [PubMed] [Google Scholar]
  21. Schmidt H. H., Nau H., Wittfoht W., Gerlach J., Prescher K. E., Klein M. M., Niroomand F., Böhme E. Arginine is a physiological precursor of endothelium-derived nitric oxide. Eur J Pharmacol. 1988 Sep 13;154(2):213–216. doi: 10.1016/0014-2999(88)90101-x. [DOI] [PubMed] [Google Scholar]
  22. Snider R. M., McKinney M., Forray C., Richelson E. Neurotransmitter receptors mediate cyclic GMP formation by involvement of arachidonic acid and lipoxygenase. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3905–3909. doi: 10.1073/pnas.81.12.3905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Snider R. M., Richelson E. Bradykinin receptor-mediated cyclic GMP formation in a nerve cell population (murine neuroblastoma clone N1E-115). J Neurochem. 1984 Dec;43(6):1749–1754. doi: 10.1111/j.1471-4159.1984.tb06104.x. [DOI] [PubMed] [Google Scholar]
  24. Stryer L. Cyclic GMP cascade of vision. Annu Rev Neurosci. 1986;9:87–119. doi: 10.1146/annurev.ne.09.030186.000511. [DOI] [PubMed] [Google Scholar]
  25. Ulbricht W. The effect of veratridine on excitable membranes of nerve and muscle. Ergeb Physiol. 1969;61:18–71. doi: 10.1007/BFb0111446. [DOI] [PubMed] [Google Scholar]
  26. Waldman S. A., Murad F. Cyclic GMP synthesis and function. Pharmacol Rev. 1987 Sep;39(3):163–196. [PubMed] [Google Scholar]
  27. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES