Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Jul;71(7):5375–5381. doi: 10.1128/jvi.71.7.5375-5381.1997

High level of transgene expression in cell cultures and in the mouse by replication-incompetent adenoviruses harboring modified VAI genes.

M Eloit 1, M Adam 1, I Gallais 1, A Fournier 1
PMCID: PMC191776  PMID: 9188608

Abstract

Replication-incompetent adenoviruses are currently used in gene therapy trials. Most of the work designed to increase the expression from these vectors concerns the modification of cis sequences of the foreign transcription unit, so as to improve the transcription level or the stability of the mRNA. In this report, we show that an alternative strategy based on the coexpression of modified VAI genes can efficiently increase gene expression both in cell cultures and in animals. The VAI RNA is synthesized mainly during the late phase of the adenovirus cycle and increases the translation of late adenovirus gene products by counteracting the effect of an interferon-induced kinase, the PKR. We have constructed several modified VAI genes in which the central domain was deleted or substituted by exogenous sequences. These modified VAI genes, or the native VAI gene, were cloned into the left part of adenovirus type 5 genomes harboring their own endogenous VAI gene. One of the resulting viruses (Ad-VAr) increased 12.5- to 502-fold the expression level of reporter genes, either expressed as a constitutive cell line from an extrachromosomal DNA or introduced into cells by coinfection with another adenovirus vector. This effect was independent of the promoter, the coding sequence, and the 5' untranslated mRNA sequence and was obvious in the two non-E1-complementing cell lines tested (HeLa and Vero). Coinfection of Ad-VAr with adenoviruses expressing the luciferase gene from the major late promoter or Rous sarcoma virus (RSV) promoter by the intravenous route in mice increased by more than 33 (MLP)- to 128 (RSV)- and 4,700 (MLP)- to 30,000 (RSV)-fold the expression level of the reporter gene in the lungs and liver, respectively. The intramuscular coinoculation of Ad-VAr and Ad-MLP-gD (a recombinant adenovirus vaccine expressing gD from the pseudorabies herpes virus) led to a 10-fold decrease in the protective dose of Ad-gD in mice. Ad-VAfull, a similar adenovirus in which the native VAI gene was cloned at the left part of the genome, showed no evidence of efficacy in cell culture and in mice. These results suggest that the use of modified VAI genes expressed at the early phase of the cycle can be helpful in the design of potent adenovirus vectors.

Full Text

The Full Text of this article is available as a PDF (275.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acsadi G., Jani A., Massie B., Simoneau M., Holland P., Blaschuk K., Karpati G. A differential efficiency of adenovirus-mediated in vivo gene transfer into skeletal muscle cells of different maturity. Hum Mol Genet. 1994 Apr;3(4):579–584. doi: 10.1093/hmg/3.4.579. [DOI] [PubMed] [Google Scholar]
  2. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  3. Eloit M., Adam M. Isogenic adenoviruses type 5 expressing or not expressing the E1A gene: efficiency as virus vectors in the vaccination of permissive and non-permissive species. J Gen Virol. 1995 Jul;76(Pt 7):1583–1589. doi: 10.1099/0022-1317-76-7-1583. [DOI] [PubMed] [Google Scholar]
  4. Eloit M., Gilardi-Hebenstreit P., Toma B., Perricaudet M. Construction of a defective adenovirus vector expressing the pseudorabies virus glycoprotein gp50 and its use as a live vaccine. J Gen Virol. 1990 Oct;71(Pt 10):2425–2431. doi: 10.1099/0022-1317-71-10-2425. [DOI] [PubMed] [Google Scholar]
  5. Ghadge G. D., Malhotra P., Furtado M. R., Dhar R., Thimmapaya B. In vitro analysis of virus-associated RNA I (VAI RNA): inhibition of the double-stranded RNA-activated protein kinase PKR by VAI RNA mutants correlates with the in vivo phenotype and the structural integrity of the central domain. J Virol. 1994 Jul;68(7):4137–4151. doi: 10.1128/jvi.68.7.4137-4151.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gonin P., Oualikene W., Fournier A., Eloit M. Comparison of the efficacy of replication-defective adenovirus and Nyvac poxvirus as vaccine vectors in mice. Vaccine. 1996 Aug;14(11):1083–1087. doi: 10.1016/0264-410x(95)00226-q. [DOI] [PubMed] [Google Scholar]
  7. Graham F. L., Smiley J., Russell W. C., Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977 Jul;36(1):59–74. doi: 10.1099/0022-1317-36-1-59. [DOI] [PubMed] [Google Scholar]
  8. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  9. Herrmann C. H., Dery C. V., Mathews M. B. Transactivation of host and viral genes by the adenovirus E1B 19K tumor antigen. Oncogene. 1987;2(1):25–35. [PubMed] [Google Scholar]
  10. Herrmann C. H., Mathews M. B. The adenovirus E1B 19-kilodalton protein stimulates gene expression by increasing DNA levels. Mol Cell Biol. 1989 Dec;9(12):5412–5423. doi: 10.1128/mcb.9.12.5412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaufman R. J. Identification of the components necessary for adenovirus translational control and their utilization in cDNA expression vectors. Proc Natl Acad Sci U S A. 1985 Feb;82(3):689–693. doi: 10.1073/pnas.82.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ma Y., Mathews M. B. Comparative analysis of the structure and function of adenovirus virus-associated RNAs. J Virol. 1993 Nov;67(11):6605–6617. doi: 10.1128/jvi.67.11.6605-6617.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mathews M. B. Control of translation in adenovirus-infected cells. Enzyme. 1990;44(1-4):250–264. doi: 10.1159/000468763. [DOI] [PubMed] [Google Scholar]
  14. Mathews M. B., Shenk T. Adenovirus virus-associated RNA and translation control. J Virol. 1991 Nov;65(11):5657–5662. doi: 10.1128/jvi.65.11.5657-5662.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mellits K. H., Kostura M., Mathews M. B. Interaction of adenovirus VA RNAl with the protein kinase DAI: nonequivalence of binding and function. Cell. 1990 Jun 1;61(5):843–852. doi: 10.1016/0092-8674(90)90194-j. [DOI] [PubMed] [Google Scholar]
  16. Mellits K. H., Mathews M. B. Effects of mutations in stem and loop regions on the structure and function of adenovirus VA RNAI. EMBO J. 1988 Sep;7(9):2849–2859. doi: 10.1002/j.1460-2075.1988.tb03141.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mellits K. H., Pe'ery T., Mathews M. B. Role of the apical stem in maintaining the structure and function of adenovirus virus-associated RNA. J Virol. 1992 Apr;66(4):2369–2377. doi: 10.1128/jvi.66.4.2369-2377.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Oualikene W., Gonin P., Eloit M. Lack of evidence of phenotypic complementation of E1A/E1B-deleted adenovirus type 5 upon superinfection by wild-type virus in the cotton rat. J Virol. 1995 Oct;69(10):6518–6524. doi: 10.1128/jvi.69.10.6518-6524.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pe'ery T., Mellits K. H., Mathews M. B. Mutational analysis of the central domain of adenovirus virus-associated RNA mandates a revision of the proposed secondary structure. J Virol. 1993 Jun;67(6):3534–3543. doi: 10.1128/jvi.67.6.3534-3543.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sollerbrant K., Akusjärvi G., Svensson C. Repression of RNA polymerase III transcription by adenovirus E1A. J Virol. 1993 Jul;67(7):4195–4204. doi: 10.1128/jvi.67.7.4195-4204.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Strijker R., Fritz D. T., Levinson A. D. Adenovirus VAI-RNA regulates gene expression by controlling stability of ribosome-bound RNAs. EMBO J. 1989 Sep;8(9):2669–2675. doi: 10.1002/j.1460-2075.1989.tb08407.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Svensson C., Akusjärvi G. A novel effect of adenovirus VA RNA1 on cytoplasmic mRNA abundance. Virology. 1990 Feb;174(2):613–617. doi: 10.1016/0042-6822(90)90116-9. [DOI] [PubMed] [Google Scholar]
  23. Svensson C., Akusjärvi G. Adenovirus VA RNAI mediates a translational stimulation which is not restricted to the viral mRNAs. EMBO J. 1985 Apr;4(4):957–964. doi: 10.1002/j.1460-2075.1985.tb03724.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ventura M., Wang P., Ragot T., Perricaudet M., Saragosti S. Activation of HIV-specific ribozyme activity by self-cleavage. Nucleic Acids Res. 1993 Jul 11;21(14):3249–3255. doi: 10.1093/nar/21.14.3249. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES