Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 Jul;100(3):656–660. doi: 10.1111/j.1476-5381.1990.tb15863.x

Bradykinin-induced depolarization of primary afferent nerve terminals in the neonatal rat spinal cord in vitro.

P M Dunn 1, H P Rang 1
PMCID: PMC1917772  PMID: 2390685

Abstract

1. Application of bradykinin (BK) to the spinal cord of the neonatal rat evoked depolarizations which could be recorded via either the dorsal or ventral roots. However, responses recorded via the ventral root were abolished by removal of extracellular Ca2+ or the addition of Cd2+, while responses recorded via the dorsal root were unaffected. 2. The response recorded via the ventral root was inhibited by the substance P antagonist spantide, while responses recorded via the dorsal root were unaffected. 3. Depolarizations recorded via the dorsal root were concentration-dependent with an EC50 of 30 nM. These responses were not antagonized by the BK1 selective antagonist Leu8des-Arg9BK, but were antagonized by D-Arg0Hyp3Thi5,8D-Phe7BK with a pA2 of 6.8 +/- 0.6, which is similar to the values determined for other BK2-mediated responses. 4. Application of phorbol dibutyrate (PDBu) to the spinal cord also evoked a depolarization with respect to the dorsal root. This response to PDBu was enhanced by removal of extracellular Ca2+, while the response to BK was unaffected. 5. The potent protein kinase inhibitor staurosporine reduced the response to PDBu, but did not affect the response to BK. 6. These results suggest that BK by acting on BK2 receptors can depolarize the central terminals of primary afferent nerve fibres. This response to BK does not appear to be mediated via the activation of protein kinase C. The depolarization to BK recorded via the ventral root of the spinal cord is indirect and may be secondary to the action of BK on the primary afferent terminals.

Full text

PDF
656

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burgess G. M., Mullaney I., McNeill M., Dunn P. M., Rang H. P. Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture. J Neurosci. 1989 Sep;9(9):3314–3325. doi: 10.1523/JNEUROSCI.09-09-03314.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Corrêa F. M., Innis R. B., Uhl G. R., Snyder S. H. Bradykinin-like immunoreactive neuronal systems localized histochemically in rat brain. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1489–1493. doi: 10.1073/pnas.76.3.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Derian C. K., Moskowitz M. A. Polyphosphoinositide hydrolysis in endothelial cells and carotid artery segments. Bradykinin-2 receptor stimulation is calcium-independent. J Biol Chem. 1986 Mar 15;261(8):3831–3837. [PubMed] [Google Scholar]
  4. Dray A., Bettaney J., Forster P., Perkins M. N. Activation of a bradykinin receptor in peripheral nerve and spinal cord in the neonatal rat in vitro. Br J Pharmacol. 1988 Dec;95(4):1008–1010. doi: 10.1111/j.1476-5381.1988.tb11732.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dray A., Bettaney J., Forster P., Perkins M. N. Bradykinin-induced stimulation of afferent fibres is mediated through protein kinase C. Neurosci Lett. 1988 Sep 12;91(3):301–307. doi: 10.1016/0304-3940(88)90697-0. [DOI] [PubMed] [Google Scholar]
  6. Dunn P. M., Rang H. P. Bradykinin activation of primary afferent terminals in the neonate rat spinal cord in vitro. Br J Pharmacol. 1989 Dec;98 (Suppl):827P–827P. [PubMed] [Google Scholar]
  7. Farmer S. G., Burch R. M., Meeker S. A., Wilkins D. E. Evidence for a pulmonary B3 bradykinin receptor. Mol Pharmacol. 1989 Jul;36(1):1–8. [PubMed] [Google Scholar]
  8. Henry J. L. Effects of substance P on functionally identified units in cat spinal cord. Brain Res. 1976 Sep 24;114(3):439–451. doi: 10.1016/0006-8993(76)90965-3. [DOI] [PubMed] [Google Scholar]
  9. Heyman I., Rang H. P. Depolarizing responses to capsaicin in a subpopulation of rat dorsal root ganglion cells. Neurosci Lett. 1985 May 1;56(1):69–75. doi: 10.1016/0304-3940(85)90442-2. [DOI] [PubMed] [Google Scholar]
  10. Laneuville O., Couture R. Bradykinin analogue blocks bradykinin-induced inhibition of a spinal nociceptive reflex in the rat. Eur J Pharmacol. 1987 Jun 4;137(2-3):281–285. doi: 10.1016/0014-2999(87)90237-8. [DOI] [PubMed] [Google Scholar]
  11. Laneuville O., Reader T. A., Couture R. Intrathecal bradykinin acts presynaptically on spinal noradrenergic terminals to produce antinociception in the rat. Eur J Pharmacol. 1989 Jan 17;159(3):273–283. doi: 10.1016/0014-2999(89)90158-1. [DOI] [PubMed] [Google Scholar]
  12. Marsh S. J., Stansfeld C. E., Brown D. A., Davey R., McCarthy D. The mechanism of action of capsaicin on sensory C-type neurons and their axons in vitro. Neuroscience. 1987 Oct;23(1):275–289. doi: 10.1016/0306-4522(87)90289-2. [DOI] [PubMed] [Google Scholar]
  13. Martin H. A., Basbaum A. I., Kwiat G. C., Goetzl E. J., Levine J. D. Leukotriene and prostaglandin sensitization of cutaneous high-threshold C- and A-delta mechanonociceptors in the hairy skin of rat hindlimbs. Neuroscience. 1987 Aug;22(2):651–659. doi: 10.1016/0306-4522(87)90360-5. [DOI] [PubMed] [Google Scholar]
  14. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
  15. Perry D. C., Snyder S. H. Identification of bradykinin in mammalian brain. J Neurochem. 1984 Oct;43(4):1072–1080. doi: 10.1111/j.1471-4159.1984.tb12846.x. [DOI] [PubMed] [Google Scholar]
  16. Rang H. P., Ritchie J. M. Depolarization of nonmyelinated fibers of the rat vagus nerve produced by activation of protein kinase C. J Neurosci. 1988 Jul;8(7):2606–2617. doi: 10.1523/JNEUROSCI.08-07-02606.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Regoli D., Barabé J. Pharmacology of bradykinin and related kinins. Pharmacol Rev. 1980 Mar;32(1):1–46. [PubMed] [Google Scholar]
  18. Ribeiro S. A., Silva M. R. Antinociceptive action of bradykinin and related kinins of larger molecular weights by the intraventricular route. Br J Pharmacol. 1973 Mar;47(3):517–528. doi: 10.1111/j.1476-5381.1973.tb08183.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rüegg U. T., Burgess G. M. Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol Sci. 1989 Jun;10(6):218–220. doi: 10.1016/0165-6147(89)90263-0. [DOI] [PubMed] [Google Scholar]
  20. Schachter M., Uchida Y., Longridge D. J., Labedz T., Whalley E. T., Vavrek R. J., Stewart J. M. New synthetic antagonists of bradykinin. Br J Pharmacol. 1987 Dec;92(4):851–855. doi: 10.1111/j.1476-5381.1987.tb11390.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Steranka L. R., Manning D. C., DeHaas C. J., Ferkany J. W., Borosky S. A., Connor J. R., Vavrek R. J., Stewart J. M., Snyder S. H. Bradykinin as a pain mediator: receptors are localized to sensory neurons, and antagonists have analgesic actions. Proc Natl Acad Sci U S A. 1988 May;85(9):3245–3249. doi: 10.1073/pnas.85.9.3245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Thayer S. A., Perney T. M., Miller R. J. Regulation of calcium homeostasis in sensory neurons by bradykinin. J Neurosci. 1988 Nov;8(11):4089–4097. doi: 10.1523/JNEUROSCI.08-11-04089.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yano K., Higashida H., Hattori H., Nozawa Y. Bradykinin-induced transient accumulation of inositol trisphosphate in neuron-like cell line NG108-15 cells. FEBS Lett. 1985 Feb 25;181(2):403–406. doi: 10.1016/0014-5793(85)80301-x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES